scholarly journals Molecular Mechanisms of Acute Brain Injury and Ensuing Neurodegeneration

Author(s):  
Francisco J. ◽  
Jose M. ◽  
Nicole Mahy ◽  
Manuel J.
2014 ◽  
Vol 2 ◽  
pp. 396-399 ◽  
Author(s):  
DJ Albers ◽  
J Claassen ◽  
M Schmidt ◽  
G Hripcsak

Therapy ◽  
2006 ◽  
Vol 3 (3) ◽  
pp. 399-405
Author(s):  
Elham Hadidi ◽  
Mojtaba Mojtahedzadeh ◽  
Mohammad Hassan Paknejad ◽  
Shekoufeh Nikfar ◽  
Mohammad Jafar Zamani ◽  
...  

2005 ◽  
Vol 20 (4) ◽  
pp. 394 ◽  
Author(s):  
V. Papaioannou ◽  
M. Giannakou ◽  
N. Maglaveras ◽  
E. Sofianos ◽  
M. Giala

BMJ Open ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. e046948
Author(s):  
Mauro Oddo ◽  
Fabio Taccone ◽  
Stefania Galimberti ◽  
Paola Rebora ◽  
Giuseppe Citerio

IntroductionThe pupillary examination is an important part of the neurological assessment, especially in the setting of acutely brain-injured patients, and pupillary abnormalities are associated with poor outcomes. Currently, the pupillary examination is based on a visual, subjective and frequently inaccurate estimation. The use of automated infrared pupillometry to measure the pupillary light reflex can precisely quantify subtle changes in pupillary functions. The study aimed to evaluate the association between abnormal pupillary function, assessed by the Neurological Pupil Index (NPi), and long-term outcomes in patients with acute brain injury (ABI).Methods and analysisThe Outcome Prognostication of Acute Brain Injury using the Neurological Pupil Index study is a prospective, observational study including adult patients with ABI requiring admission at the intensive care unit. We aimed to recruit at least 420 patients including those suffering from traumatic brain injury or haemorrhagic strokes, over 12 months. The primary aim was to assess the relationship between NPi and 6-month mortality or poor neurological outcome, measured by the Extended Glasgow Outcome Score (GOS-E, poor outcome=GOS-E 1–4). Supervised and unsupervised methods and latent class mixed models will be used to identify patterns of NPi trajectories and Cox and logistic model to evaluate their association with outcome.Ethics and disseminationThe study has been approved by the institutional review board (Comitato Etico Brianza) on 16 July 2020. Approved protocol V.4.0 dated 10 March 2020. The results of this study will be published in peer-reviewed journals and presented at conferences.Trial registration numberNCT04490005.


2015 ◽  
Vol 96 (10) ◽  
pp. e31
Author(s):  
Carlos Daniel Marquez de la Plata ◽  
Lisa Morgan ◽  
Devin Qualls ◽  
Patrick Michael Plenger ◽  
Richard M. Capriotti ◽  
...  

1997 ◽  
Vol 2 (6) ◽  
pp. E7 ◽  
Author(s):  
Berislav V. Zlokovic

Maintaining a delicate balance among anticoagulant, procoagulant, and fibrinolytic pathways in the cerebral microcirculation is of major importance for normal cerebral blood flow. Under physiological conditions and in the absence of provocative stimuli, the anticoagulant and fibrinolytic pathways prevail over procoagulant mechanisms. Blood clotting is essential to minimize bleeding and to achieve hemostasis; however, excessive clotting contributes to thrombosis and may predispose the brain to infarction and ischemic stroke. Conversely, excessive bleeding due to enhanced anticoagulatory and fibrinolytic mechanisms could predispose the brain to hemorrhagic stroke. Recent studies in the author's laboratory indicate that brain capillary endothelium in vivo produces thrombomodulin (TM), a key cofactor in the TM-protein C system that is of major biological significance to the antithrombotic properties of the blood-brain barrier (BBB). The BBB endothelium also expresses tissue plasminogen activator (tPA), a key protein in fibrinolysis, and its rapid inhibitor, plasminogen activator inhibitor (PAI-1). The procoagulant tissue factor is normally dormant at the BBB. There is a vast body of clinical evidence to document the importance of hemostasis in the pathophysiology of brain injury. In particular, functional changes caused by major stroke risk factors in the TM-protein C, tPA/PAI-1, and tissue factor systems at the BBB may result in large and debilitating infarctions following an ischemic insult. Thus, correcting this hemostatic imbalance could ameliorate drastic CBF reductions at the time of ischemic insult, ultimately resulting in brain protection. Delineation of the molecular mechanisms of BBB-mediated hemostasis will likely contribute to future stroke prevention efforts and brain protection strategies.


2005 ◽  
Vol 147 (8) ◽  
pp. 897-900 ◽  
Author(s):  
J. Sen ◽  
A. Belli ◽  
A. Petzold ◽  
S. Russo ◽  
G. Keir ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Denise Battaglini ◽  
Dorota Siwicka-Gieroba ◽  
Patricia RM Rocco ◽  
Fernanda Ferreira Cruz ◽  
Pedro Leme Silva ◽  
...  

: Traumatic brain injury (TBI) is a major cause of disability and death worldwide. The initial mechanical insult results in tissue and vascular disruption with hemorrhages and cellular necrosis that is followed by a dynamic secondary brain damage that presumably results in additional destruction of the brain. In order to minimize deleterious consequences of the secondary brain damage-such as inflammation, bleeding or reduced oxygen supply. The old concept of the -staircase approach- has been updated in recent years by most guidelines and should be followed as it is considered the only validated approach for the treatment of TBI. Besides, a variety of novel therapies have been proposed as neuroprotectants. The molecular mechanisms of each drug involved in inhibition of secondary brain injury can result as potential target for the early and late treatment of TBI. However, no specific recommendation is available on their use in clinical setting. The administration of both synthetic and natural compounds, which act on specific pathways involved in the destructive processes after TBI, even if usually employed for the treatment of other diseases, can show potential benefits. This review represents a massive effort towards current and novel therapies for TBI that have been investigated in both pre-clinical and clinical settings. This review aims to summarize the advancement in therapeutic strategies basing on specific and distinct -target of therapies-: brain edema, ICP control, neuronal activity and plasticity, anti-inflammatory and immunomodulatory effects, cerebral autoregulation, antioxidant properties, and future perspectives with the adoption of mesenchymal stromal cells.


Sign in / Sign up

Export Citation Format

Share Document