scholarly journals Application of Optical Techniques in the Characterization of Thermal Stability and Environmental Degradation in High Temperature Superconductors

10.5772/46938 ◽  
2010 ◽  
Author(s):  
Luis Angurel ◽  
Nieves Andres ◽  
Mara Pilar ◽  
Sara Recuero ◽  
Elena Martinez ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1970
Author(s):  
Michael Rudolf Koblischka ◽  
Anjela Koblischka-Veneva

The fabrication and characterization of superconducting nanowires fabricated by the anodic aluminium oxide (AAO) template technique has been reviewed. This templating method was applied to conventional metallic superconductors, as well as to several high-temperature superconductors (HTSc). For filling the templates with superconducting material, several different techniques have been applied in the literature, including electrodeposition, sol-gel techniques, sputtering, and melting. Here, we discuss the various superconducting materials employed and the results obtained. The arising problems in the fabrication process and the difficulties concerning the separation of the nanowires from the templates are pointed out in detail. Furthermore, we compare HTSc nanowires prepared by AAO templating and electrospinning with each other, and give an outlook to further research directions.


2005 ◽  
Vol 872 ◽  
Author(s):  
Peter Lange ◽  
Birger Ohlsen ◽  
Sebastian Puls ◽  
Joerg Syre

AbstractThe effects of temperature on micro heaters made of Ti/TiN stacks and pure TiN layers on bulk micromachined membranes have been studied. Ti/TiN stacks show a thermal stability up to 380°C, beyond that temperature an enhanced interaction within the stack and/or with adjacend layers leads to a degradation of the resistance. The pure TiN layers withstand temperatures up to 600 °C, this limitation is only given by the mechanical stability of the membran stack, which is destroyed beyond this temperature. These layers are suitable for sensors in which an elevated temperature provided by heating lines on a membran for thermal isolation and fast response is necessary for functionality.


2015 ◽  
Vol 1102 ◽  
pp. 67-71 ◽  
Author(s):  
Rui Hua Yang ◽  
Jin Yang Liu ◽  
Li Mei Lin ◽  
Fa Chun Lai ◽  
Yan Qu ◽  
...  

In terms of good optical properties and high thermal stability, Mo/Si3N4/Mo/Si3N4/SiO2 coatings based on metal/dielectric multilayer structure were adapted to the solar selective coating at high operating temperatures. The coatings exhibited high solar absorptance in the range of 0.924 ~ 0.936 and low thermal emittance of 0.114 ~ 0.118. The coatings deposited on quartz substrates were thermally stable up to 625 °C in air for 2 h, while they were degraded at 650 °C from the characterization of the absorptance and emittance. The degradation of the coatings was mainly due to the oxidation of molybdenum in air, which was confirmed by Raman spectroscopy. Compared with the thermal stability in air, the coatings were much more stable in vacuum under high temperature. The remarkable thermal stability of the Mo/Si3N4/Mo/Si3N4/SiO2 coatings in air and in vacuum makes them suitable to be applied at high temperature applications.


Cryogenics ◽  
1989 ◽  
Vol 29 (6) ◽  
pp. 602-609 ◽  
Author(s):  
C.L. Tien ◽  
M.I. Flik ◽  
P.E. Phelan

Author(s):  
M.R. Koblischka

This article describes the fabrication of high-temperature superconducting nanowires and their characterization by magnetic and electric transport measurements. In the literature, nanowires of high-temperature superconductors (HTSc) are obtained by means of lithography, using thin film material as a base. However, there are two main problems with this approach: first, the substrate often influences the HTSc nanowire, and second, only electric transport measurements can be performed. This article explains how nanowires and nanobelts of high-temperature superconducting cuprates can be prepared by the template method and by electrospinning. It also considers the possibilities for employing substrate-free HTSc nanowires as building blocks to realize new, nanoporous bulk superconducting materials for a variety of applications.


Sign in / Sign up

Export Citation Format

Share Document