scholarly journals Design, Management and Control of Logistic Distribution Systems

Supply Chain ◽  
10.5772/5347 ◽  
2008 ◽  
Author(s):  
Riccardo Manzini ◽  
Rita Gamberini
2018 ◽  
Vol 17 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Shakhawat Chowdhury

Abstract Desalinated seawater is the major source of drinking water in many countries. During desalination, several activities including pretreatment, desalination, stabilization, mixing, storage and distribution are performed. Few disinfectants are used during these activities to control the biofouling agents and microbiological regrowth. The reactions between the disinfectants and natural organic matter (NOM), bromide and iodide form disinfection by-products (DBPs) in product water. The product water is stabilized and mixed with treated freshwater (e.g., groundwater) to meet the domestic water demands. The DBPs in desalinated and blend water are an issue due to their possible cancer and non-cancer risks to humans. In this paper, formation and distribution of DBPs in different steps of desalination and water distribution systems prior to reaching the consumer tap were reviewed. The variability of DBPs among different sources and desalination processes was explained. The toxicities of DBPs were compared and the strategies to control DBPs in desalinated water were proposed. Several research directions were identified to achieve comprehensive control on DBPs in desalinated water, which are likely to protect humans from the adverse consequences of DBPs.


2014 ◽  
Vol 26 (2) ◽  
pp. 323-331 ◽  
Author(s):  
Pinpin Lu ◽  
Xiaojian Zhang ◽  
Chiqian Zhang ◽  
Zhangbin Niu ◽  
Shuguang Xie ◽  
...  

Author(s):  
Marija D. Ilic ◽  
Pedro M. S. Carvalho

We propose to conceptualise electric energy systems as complex dynamical systems using physically intuitive multilayered energy modelling as the basis for systematic diverse technology integration, and control in on-line operations. It is shown that such modelling exhibits unique structure which comes from the conservation of instantaneous power (P) and of instantaneous reactive power ( _Q), (interaction variables (intVar)) at the interfaces of subsystems. The intVars are used as a means to model and control the interactive zoomed-out inter-modular (inter-area, inter-component) system dynamics. Control co-design can then be pursued using these models so that the primary control shapes intVars of its own module by using its own lowlevel detailed technology-specific model and intVar info exchange with the neighbours. As a result, we describe how the proposed approach can be used to support orderly evolution from today’s hierarchical control to a platform enabling flexible interactive protocols for electricity services. The potential for practical use of the proposed concepts is far-reaching and transparent. All that needs to be conceived is that intVar characterising any intelligent Balancing Authority (iBA) is a generalisation of today’s Area Control Error (ACE) characterising net energy balance of a Balancing Authority (BA). An iBA can be any subsystem with its own sub-objectives, such as distributed energy resources (DERs) comprising customers and grid forming microgrids; distribution systems; transmission systems; Independent System Operators (ISOs); and, ultimately, electric energy markets within large interconnection. Several industry problems are described as particular sub-problems of general interactive electricity services. These formulations help one compare models and assumptions used as part of current solutions, and propose enhanced solutions. Most generally, feasibility and stability conditions can be introduced for ensuring feasible power flow solutions, regulated frequency and voltage and orderly power exchange across the iBAs.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 307-313 ◽  
Author(s):  
J. Lee ◽  
D. Lee ◽  
J. Sohn

Maintenance of adequate chlorine residuals and control of disinfection byproducts (DBPs) throughout water distribution systems is currently an important issue. In particular, rechlorination can be a powerful tool in controlling adequate chlorine residual in a large distribution system. The patterns of chlorine decay and formation of DBPs due to rechlorination are different from those of chlorination; chlorine decay is slower and trihalomethane (THM) formation is lower with rechlorination. The present study evaluates whether existing predictive models for chlorine residual and THM formation are applicable in the case of rechlorination. A parallel first-order decay model represents the best simulation results for chlorine decay, and an empirical power function model (modified Amy model) with an introduced correction coefficient (ϕ1, ϕ2) is more suitable to THM formation.


2003 ◽  
Vol 47 (5) ◽  
pp. 83-90 ◽  
Author(s):  
D. van der Kooij ◽  
J.S. Vrouwenvelder ◽  
H.R. Veenendaal

Controlling biological processes in water treatment and distribution is a major challenge to water supply companies. In the Netherlands, the use of chlorine-based disinfectants in water treatment is limited as much as possible and treated water is distributed without disinfectant residual in most cases. Biofilm formation processes in water treatment and distribution are studied using adenosinetriphosphate (ATP) as the parameter for active biomass. ATP measurements are applied to assess biofilm concentrations in distribution systems, in the biofilm monitor to determine the biofilm formation rate of treated water, in the biomass production potential test to determine the effect of pipe materials on microbial growth and in membrane systems to quantify biofouling. The use of a single parameter enables to compare biofilm concentrations in all situations and contributes to the understanding and control of biofilm formation processes in water treatment and distribution. This approach has been designated as the Unified Biofilm Approach.


2013 ◽  
Vol 448-453 ◽  
pp. 2191-2194
Author(s):  
Lei Zhou ◽  
Hong Da Liu ◽  
Ming Jie Chen ◽  
Nai Jun Shen

On the basis of analyzing the synthesis application of p-q (instantaneous reactive power) theory and unit vector template, a multi-functional grid-connected inverter (MFGCI) with auxiliary services on power quality enhancement in micro-grid (MG) is presented. The novel control strategy for achieving maximum benefits from these MFGCI when installed in AC MG access to 3-phase 4-wire distribution systems by isolated transformer at the point of common coupling (PCC). This kind of inverter can not only deliver the power generation of renewable energy sources (RESs), but also can perform as active power filter (APF) at their PCC as well as can improve the efficiency of inverter and decrease the hardware investment. Finally, both feasibility and effectiveness of this new topologies and control strategies of MFGCI are verified by PSCAD/EMTDC.


Sign in / Sign up

Export Citation Format

Share Document