scholarly journals Dynamic Modelling and Vibration Control of a Planar Parallel Manipulator with Structurally Flexible Linkages

Author(s):  
Bongsoo Kang ◽  
James K.
Author(s):  
Zhengsheng Chen ◽  
Minxiu Kong ◽  
Chen Ji ◽  
Ming Liu

An efficient dynamic modelling approach was presented for planar parallel manipulator with flexible links. To increase the accuracy of the model, an improved curvature-based finite element method (ICFE) was developed for discretisation of the flexible links. Then, a novel approach for analysis of the coupling between rigid-body motion and flexible-body motion was proposed, and compared to the regular geometrical method, the proposed method was accurate and easy to implement. With the aforementioned proposed methods, the Kane equation was integrated to formulate the dynamic model of a 3RRR planar parallel manipulator. Finally, comparison studies were performed to validate the proposed ICFE and the integrated dynamic modelling method. Compared to the regular curvature-based finite element method (CFE), the ICFE exhibits improved accuracy with equivalent degrees of freedom. Additionally, the proposed integrated dynamic model shows a good agreement with the Abaqus model. Therefore, it was concluded that the proposed dynamic modelling method herein was efficient and accurate for parallel manipulators with flexible links, demonstrating reasonable potentials for model based control.


Author(s):  
L-P Wang ◽  
J-S Wang ◽  
Y-W Li ◽  
Y Lu

This paper presents an inverse dynamic formulation using the Newton-Euler approach for a planar parallel manipulator, which is used in a new five-axis hybrid machine tool. The inverse kinematics of the manipulator is given and the velocity and the acceleration formulae are derived. The driving forces acting on the legs are determined according to the dynamic formulation. The formulation has been implemented in a program and has been used for some typical trajectories planned for a numerical simulation experiment. The simulation results reveal the nature of the variation of the driving forces in the hybrid machine tool and justify the dynamic control model. The dynamic modelling approach presented in this paper can also be applied to other parallel manipulators with less than six degrees of freedom.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Amin Valizadeh ◽  
Morteza Shariatee

Thanks to their advantages over rigid ones, interest for lightweight parallel manipulator was increased. Besides, structural flexibility effects at high operational speeds are more significant. Thus, developing an appropriate model for the assessment of the dynamic properties of flexible mechanisms and linkages to gain effective vibration control will raise high demand. Therefore, this paper represents the dynamic and kinematic modeling using the assumed mode method and first-type Lagrange equations of the 2-DOF planar parallel manipulator with two flexible links. To truly predict vibrations of the manipulator without any major simplifying assumptions, nonlinear dynamic modeling, which thoroughly attempts to represent the flexible behavior of the links, is considered. As a result, an active damping approach is being studied with PZT actuators. The results show that this approach is effective in damping the vibrations of the links that give accurate trajectory control.


Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document