scholarly journals The Pose Estimation of Mobile Robot Based on Improved Point Cloud Registration

10.5772/62342 ◽  
2016 ◽  
Vol 13 (2) ◽  
pp. 52 ◽  
Author(s):  
Yanzi Miao ◽  
Yang Liu ◽  
Hongbin Ma ◽  
Huijie Jin
2019 ◽  
Vol 9 (16) ◽  
pp. 3273 ◽  
Author(s):  
Wen-Chung Chang ◽  
Van-Toan Pham

This paper develops a registration architecture for the purpose of estimating relative pose including the rotation and the translation of an object in terms of a model in 3-D space based on 3-D point clouds captured by a 3-D camera. Particularly, this paper addresses the time-consuming problem of 3-D point cloud registration which is essential for the closed-loop industrial automated assembly systems that demand fixed time for accurate pose estimation. Firstly, two different descriptors are developed in order to extract coarse and detailed features of these point cloud data sets for the purpose of creating training data sets according to diversified orientations. Secondly, in order to guarantee fast pose estimation in fixed time, a seemingly novel registration architecture by employing two consecutive convolutional neural network (CNN) models is proposed. After training, the proposed CNN architecture can estimate the rotation between the model point cloud and a data point cloud, followed by the translation estimation based on computing average values. By covering a smaller range of uncertainty of the orientation compared with a full range of uncertainty covered by the first CNN model, the second CNN model can precisely estimate the orientation of the 3-D point cloud. Finally, the performance of the algorithm proposed in this paper has been validated by experiments in comparison with baseline methods. Based on these results, the proposed algorithm significantly reduces the estimation time while maintaining high precision.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1873 ◽  
Author(s):  
Hui Xu ◽  
Guodong Chen ◽  
Zhenhua Wang ◽  
Lining Sun ◽  
Fan Su

As an important part of a factory’s automated production line, industrial robots can perform a variety of tasks by integrating external sensors. Among these tasks, grasping scattered workpieces on the industrial assembly line has always been a prominent and difficult point in robot manipulation research. By using RGB-D (color and depth) information, we propose an efficient and practical solution that fuses the approaches of semantic segmentation and point cloud registration to perform object recognition and pose estimation. Different from objects in an indoor environment, the characteristics of the workpiece are relatively simple; thus, we create and label an RGB image dataset from a variety of industrial scenarios and train the modified FCN (Fully Convolutional Network) on a homemade dataset to infer the semantic segmentation results of the input images. Then, we determine the point cloud of the workpieces by incorporating the depth information to estimate the real-time pose of the workpieces. To evaluate the accuracy of the solution, we propose a novel pose error evaluation method based on the robot vision system. This method does not rely on expensive measuring equipment and can also obtain accurate evaluation results. In an industrial scenario, our solution has a rotation error less than two degrees and a translation error < 10 mm.


2018 ◽  
Vol 30 (4) ◽  
pp. 642
Author(s):  
Guichao Lin ◽  
Yunchao Tang ◽  
Xiangjun Zou ◽  
Qing Zhang ◽  
Xiaojie Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document