scholarly journals On a Hopping-Points SVD and Hough Transform-Based Line Detection Algorithm for Robot Localization and Mapping

10.5772/63540 ◽  
2016 ◽  
Vol 13 (3) ◽  
pp. 98 ◽  
Author(s):  
Abhijeet Ravankar ◽  
Ankit A. Ravankar ◽  
Yohei Hoshino ◽  
Takanori Emaru ◽  
Yukinori Kobayashi
2018 ◽  
Vol 28 (2) ◽  
pp. 254-260 ◽  
Author(s):  
Fang Zheng ◽  
Sheng Luo ◽  
Kang Song ◽  
Chang-Wei Yan ◽  
Mu-Chou Wang

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1665
Author(s):  
Jakub Suder ◽  
Kacper Podbucki ◽  
Tomasz Marciniak ◽  
Adam Dąbrowski

The aim of the paper was to analyze effective solutions for accurate lane detection on the roads. We focused on effective detection of airport runways and taxiways in order to drive a light-measurement trailer correctly. Three techniques for video-based line extracting were used for specific detection of environment conditions: (i) line detection using edge detection, Scharr mask and Hough transform, (ii) finding the optimal path using the hyperbola fitting line detection algorithm based on edge detection and (iii) detection of horizontal markings using image segmentation in the HSV color space. The developed solutions were tuned and tested with the use of embedded devices such as Raspberry Pi 4B or NVIDIA Jetson Nano.


2021 ◽  
Vol 18 (2) ◽  
pp. 172988142110087
Author(s):  
Qiao Huang ◽  
Jinlong Liu

The vision-based road lane detection technique plays a key role in driver assistance system. While existing lane recognition algorithms demonstrated over 90% detection rate, the validation test was usually conducted on limited scenarios. Significant gaps still exist when applied in real-life autonomous driving. The goal of this article was to identify these gaps and to suggest research directions that can bridge them. The straight lane detection algorithm based on linear Hough transform (HT) was used in this study as an example to evaluate the possible perception issues under challenging scenarios, including various road types, different weather conditions and shades, changed lighting conditions, and so on. The study found that the HT-based algorithm presented an acceptable detection rate in simple backgrounds, such as driving on a highway or conditions showing distinguishable contrast between lane boundaries and their surroundings. However, it failed to recognize road dividing lines under varied lighting conditions. The failure was attributed to the binarization process failing to extract lane features before detections. In addition, the existing HT-based algorithm would be interfered by lane-like interferences, such as guardrails, railways, bikeways, utility poles, pedestrian sidewalks, buildings and so on. Overall, all these findings support the need for further improvements of current road lane detection algorithms to be robust against interference and illumination variations. Moreover, the widely used algorithm has the potential to raise the lane boundary detection rate if an appropriate search range restriction and illumination classification process is added.


2019 ◽  
Vol 52 (3-4) ◽  
pp. 252-261 ◽  
Author(s):  
Xiaohua Cao ◽  
Daofan Liu ◽  
Xiaoyu Ren

Auto guide vehicle’s position deviation always appears in its walking process. Current edge approaches applied in the visual navigation field are difficult to meet the high-level requirements of complex environment in factories since they are easy to be affected by noise, which results in low measurement accuracy and unsteadiness. In order to avoid the defects of edge detection algorithm, an improved detection method based on image thinning and Hough transform is proposed to solve the problem of auto guide vehicle’s walking deviation. First, the image of lane line is preprocessed with gray processing, threshold segmentation, and mathematical morphology, and then, the refinement algorithm is employed to obtain the skeleton of the lane line, combined with Hough detection and line fitting, the equation of the guide line is generated, and finally, the value of auto guide vehicle’s walking deviation can be calculated. The experimental results show that the methodology we proposed can deal with non-ideal factors of the actual environment such as bright area, path breaks, and clutters on road, and extract the parameters of the guide line effectively, after which the value of auto guide vehicle’s walking deviation is obtained. This method is proved to be feasible for auto guide vehicle in indoor environment for visual navigation.


2004 ◽  
Vol 16 (1) ◽  
pp. 23-47 ◽  
Author(s):  
M. Di Marco ◽  
A. Garulli ◽  
A. Giannitrapani ◽  
A. Vicino

Sign in / Sign up

Export Citation Format

Share Document