scholarly journals Adaptive Building Envelope: An Integral Approach to Indoor Environment Control in Buildings

Author(s):  
Mitja Košir
Author(s):  
Lingjiang Huang ◽  
Jian Kang

AbstractThe solar incidence on an indoor environment and its occupants has significant impacts on indoor thermal comfort. It can bring favorable passive solar heating and can result in undesired overheating (even in winter). This problem becomes more critical for high altitudes with high intensity of solar irradiance, while received limited attention. In this study, we explored the specific overheating and rising thermal discomfort in winter in Lhasa as a typical location of a cold climate at high altitudes. First, we evaluated the thermal comfort incorporating solar radiation effect in winter by field measurements. Subsequently, we investigated local occupant adaptive responses (considering the impact of direct solar irradiance). This was followed by a simulation study of assessment of annual based thermal comfort and the effect on energy-saving potential by current solar adjustment. Finally, we discussed winter shading design for high altitudes for both solar shading and passive solar use at high altitudes, and evaluated thermal mass shading with solar louvers in terms of indoor environment control. The results reveal that considerable indoor overheating occurs during the whole winter season instead of summer in Lhasa, with over two-thirds of daytime beyond the comfort range. Further, various adaptive behaviors are adopted by occupants in response to overheating due to the solar radiation. Moreover, it is found that the energy-saving potential might be overestimated by 1.9 times with current window to wall ratio requirements in local design standards and building codes due to the thermal adaption by drawing curtains. The developed thermal mass shading is efficient in achieving an improved indoor thermal environment by reducing overheating time to an average of 62.2% during the winter and a corresponding increase of comfort time.


2014 ◽  
Vol 1056 ◽  
pp. 128-130
Author(s):  
Fu Yun Yang

Doors and windows of the building is an important part of the building envelope. AS the transparent and open envelope of the building, doors and windowsare the weakest part in the winter and summer heat preservation. It directly affects the energy performance of buildings. Therefore, do a good job of building doors and windows energy saving is an important way to optimize the indoor environment and realize energy saving.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Weinan Gan ◽  
Yunzhong Cao ◽  
Wen Jiang ◽  
Liangqiang Li ◽  
Xiaolin Li

The contradiction between the indoor environment and building energy consumption has been controversial. The design of building envelope involves many parameters such as window size and exterior wall material. These parameters have significant influence on building energy-saving design and indoor environment. In this paper, nondominant sorting genetic algorithm-II (NSGA-II) is utilized to calculate winter heat consumption, indoor total lighting energy consumption, and thermal comfort. The Pareto method is used to select the compromise solution and effective value of each building parameter. Different from other studies, we add more architectural design variables into the model calculation, which can bring architects more detailed energy-saving design content.


Sign in / Sign up

Export Citation Format

Share Document