scholarly journals Cenozoic Fault Zone Activity and Geologic Evolution of the Offshore Regions of Fukushima and Miyagi Prefectures, Northeastern Japan, Based on Petroleum Exploration Data

Author(s):  
Hiroyuki Arato
2020 ◽  
Vol 57 (10) ◽  
pp. 1254-1267
Author(s):  
Lisel D. Currie ◽  
Tom A. Brent ◽  
Elizabeth C. Turner

Understanding the Mesoproterozoic and younger structural history of the Eclipse Sound/Pond Inlet area is essential for the interpretation of its Archean to Paleoproterozoic geological history and could have important implications for mineral and petroleum exploration models in the northern Baffin Bay area. The identification of potentially active faults is critical for understanding possible earthquake-related hazards in the area. The integrated interpretation of 1970s-vintage marine seismic data with hill-shaded bathymetry, aeromagnetic data, and onshore geology maps has facilitated the identification of probable Mesoproterozoic (Bylot Supergroup) to Holocene strata on and below the sea floor and a suite of episodically reactivated northwest-striking horst- and graben-bounding normal faults and fault zones. Fault displacement likely occurred during the development of the Mesoproterozoic Borden basin and the Cretaceous–Paleogene opening of Baffin Bay, and in some cases may continue today. Some faults become more west-trending toward the south, which requires parts of these faults to have intermittently accommodated transtensional and (or) transpressional motion, possibly explaining local folds and out-of-graben thrusting. Numerous previously unrecognised faults have been documented, with faults beneath Eclipse Sound (Eclipse Trough) spaced at 5 to 7 km intervals, and at least one fault zone (Cape Hay Fault Zone) that appears to be at least 250 km in length, suggesting faults of similar spacing and scale may be present under Baffin Bay. This study uses a multi-thematic office-based methodology that inexpensively, and with little environmental impact, facilitates the mapping of structures that intersect the sea floor in areas where glaciers have exposed bedrock.


2020 ◽  
Author(s):  
Camilla Würtzen ◽  
Johan Petter Nystuen ◽  
Reidar Müller ◽  
Johnathon Osmond ◽  
Jan Inge Faleide ◽  
...  

<p>The Triassic continental succession located in the eastern side of the Horda Platform (northern North Sea) represents a potential supplementary CO<sub>2</sub> storage formation to the principal Jurassic sandstones above. Several 1-2.5 kilometer-thick packages of Triassic sediment lie within a series of large eastward-dipping half-grabens east of the Viking Graben. The deeply buried Triassic deposits (1.8-3 km) within the prospective area are confined between the Øygarden Fault Zone to the east and the Vette Fault Zone to the west, the latter separating the prospective area from the Troll hydrocarbon fields. Despite extensive petroleum exploration within the Horda Platform, the entire Triassic interval remains largely untested and its storage potential poorly understood. The lack of wellbore penetrations and 3D seismic coverage means that reservoir quality can only be assessed using conceptual predictions and analogue studies.</p><p>A seismic stratigraphic model is built using available 2D and 3D seismic and integrated well log data to discern the Triassic basin fill history and structural development of the area. The stratigraphic succession is subdivided into seismic facies, where reflection patterns infer depositional characteristics. A shift in log facies trend between mud- and sand-rich intervals indicates a variance in subsidence rate and sedimentation supply related to tectonic displacement rate and climate. Visual analyses of the seismic data along key horizons also reveal depositional features such as channels, hanging wall fans, and footwall fans. The location and distribution of the channels are mapped in order to assess the connectivity of possible storage bodies.</p><p>Analogous Triassic sandstone reservoirs of the Snorre field (Tampen Spur) roughly 125 km away are similar in terms of stratigraphic facies and mineralogy. The Snorre field reservoirs are dominantly subarkosic and arkosic sandstones with illite-smectite and chlorite-smectite and lesser amounts of kaolinite and chlorite clay minerals within the matrix and pore spaces. Furthermore, the Triassic succession is composed of sandstones and mudstones deposited in fluvial systems with subordinate alluvial plain environments. The sandstones possess highly variable poro-perm values closely related to the depositional facies. As the Horda Platform sediments were deposited more proximal to the source than those of the Tampen Spur, it is expected that coarser grain sizes persist within the prospective interval, but perhaps at a lower degree of maturity and higher grain size variability. Overall, this preliminary assessment suggests that thick Triassic channel sandstones present in the eastern Horda Platform have promising CCS potential.</p><p> </p><p><strong>Keywords</strong>. Triassic, Horda Platform, CCS, basin fill history, seismic facies, tectonic displacement, climate, reservoir quality</p>


2015 ◽  
Vol 10 (1) ◽  
pp. 31-38
Author(s):  
Ildikó Buocz ◽  
Nikoletta Rozgonyi-Boissinot ◽  
Ákos Török

Sign in / Sign up

Export Citation Format

Share Document