scholarly journals Reactivity Indexes and Structure of Fullerenes

Author(s):  
Ernestina Mora Jiménez ◽  
Francisco J. Tenorio ◽  
David Alejandro Hernández-Velázquez ◽  
Jaime Gustavo Rodríguez-Zavala ◽  
Gregorio Guzmán-Ramírez
Keyword(s):  
2021 ◽  
Vol 10 (1) ◽  
pp. 189-200
Author(s):  
Yuan She ◽  
Chong Zou ◽  
Shiwei Liu ◽  
Keng Wu ◽  
Hao Wu ◽  
...  

Abstract Thermoanalysis was used in this research to produce a comparative study on the combustion and gasification characteristics of semi-coke prepared under pyrolytic atmospheres rich in CH4 and H2 at different proportions. Distinctions of different semi-coke in terms of carbon chemical structure, functional groups, and micropore structure were examined. The results indicated that adding some reducing gases during pyrolysis could inhibit semi-coke reactivity, the inhibitory effect of the composite gas of H2 and CH4 was the most observable, and the effect of H2 was higher than that of CH4; moreover, increasing the proportion of reducing gas increased its inhibitory effect. X-ray diffractometer and Fourier-transform infrared spectrometer results indicated that adding reducing gases in the atmosphere elevated the disordering degree of carbon microcrystalline structures, boosted the removal of hydroxyl- and oxygen-containing functional groups, decreased the unsaturated side chains, and improved condensation degree of macromolecular networks. The nitrogen adsorption experiment revealed that the types of pore structure of semi-coke are mainly micropore and mesopore, and the influence of pyrolytic atmosphere on micropores was not of strong regularity but could inhibit mesopore development. Aromatic lamellar stack height of semi-coke, specific surface area of mesopore, and pore volume had a favorable linear correlation with semi-coke reactivity indexes.


Synthesis ◽  
2021 ◽  
Author(s):  
Dmitrii L. Obydennov ◽  
Vyacheslav D. Steben’kov ◽  
Konstantin L. Obydennov ◽  
Sergey A. Usachev ◽  
Vladimir S. Moshkin ◽  
...  

Abstract4-Pyrones bearing electron-donating and electron-withdrawing groups react with nonstabilized azomethine ylides to form pyrano[2,3-c]pyrrolidines in moderate to good yields. The reaction proceeds chemoselectively as a 1,3-dipolar cycloaddition of the azomethine ylide at the carbon–carbon double bond of the pyrone activated by the electron-withdrawing substituent. The reactivity of 4-pyrones toward azomethine ylides was rationalized by computational studies with the use of reactivity indexes. The pyrano[2,3-c]pyrrolidine moiety could be modified, for example by a ring-opening transformation under the action of hydrazine to provide pyrazolyl-substituted pyrrolidines.


Tetrahedron ◽  
2004 ◽  
Vol 60 (50) ◽  
pp. 11503-11509 ◽  
Author(s):  
M.José Aurell ◽  
Luis R. Domingo ◽  
Patricia Pérez ◽  
Renato Contreras

2003 ◽  
Vol 119 (18) ◽  
pp. 9393-9400 ◽  
Author(s):  
Miquel Torrent-Sucarrat ◽  
Josep M. Luis ◽  
Miquel Duran ◽  
Alejandro Toro-Labbé ◽  
Miquel Solà

2017 ◽  
Vol 29 (3) ◽  
pp. 741-751 ◽  
Author(s):  
D. Alejandro Hernandez ◽  
Francisco J. Tenorio

Mineralogia ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 37-45
Author(s):  
Michał Wichliński ◽  
Rafał Kobyłecki

Abstract The current work presents the results of seven sorbent samples investigated with respect to SO2 capture. The sorbents’ reactivity and capacity indexes were determined, and the tests were carried out in accordance with the ‘classical’ procedure for limestone sorbents. The reactivity indexes (RIs) of the tested samples were in the range of 2.57 and 3.55 (mol Ca)/(mol S), while the absolute sorption coefficients as determined by the capacity index (CI) varied between 87.9 and 120.6 (g S)/(kg of sorbent). Porosimetric analysis was also carried out and the specific surface area of the samples was found to be between 0.2 and 1.7 m2/g. The number of micro-, meso- and macro-pores in individual samples was determined from the corresponding pore size distribution histograms, and the values of sorbent RIs and CIs were correlated with the samples’ total porosity and specific surface.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Eloisa Román-Maldonado ◽  
Horacio Reyes ◽  
Miguel A. Sanchez-Carmona ◽  
Nelly González-Rivas ◽  
Erick Cuevas-Yañez

A novel series of 1-(2-chlorobenzyloxy)-3-[1,2,3]triazol-1-yl-propan-2-ol derivatives was designed and synthesized using copper catalyzed alkyne-azide cycloaddition in the key step. Theoretical investigation of molecular and electronic properties by means of global and local reactivity indexes of the synthetized compounds was carried out, using DFT (Density Functional Theory) at PBEPBE/6-31++G⁎⁎level.


Sign in / Sign up

Export Citation Format

Share Document