scholarly journals Numerical Modeling of Cyclic Creep-Fatigue Damage Development for Lifetime Assessment of Steam Turbine Components

Author(s):  
Mariusz Banaszkiewicz

Author(s):  
Weizhe Wang

A multi-axial continuum damage mechanics (CDM) model was proposed to calculate the multi-axial creep–fatigue damage of a high temperature component. A specific outer cylinder of a 1000 MW supercritical steam turbine was used in this study, and the interaction of the creep and fatigue behavior of the outer cylinder was numerically investigated under a startup–running–shutdown process. To this end, the multi-axial stress–strain behavior of the outer cylinder was numerically studied using Abaqus. The in-site measured temperatures were provided to validate the heat transfer coefficients, which were used to calculate the temperature field of the outer cylinder. The multi-axial mechanics behavior of the outer cylinder was investigated in detail, with regard to the temperature, Mises stress, hydrostatic stress, multi-axial toughness factor, multi-axial creep strain, and damage. The results demonstrated that multi-axial mechanics behavior reduced the total damage.



2002 ◽  
Vol 124 (3) ◽  
pp. 292-297 ◽  
Author(s):  
Pradeep Sharma ◽  
Abhijit Dasgupta

This paper presents a micro-mechanistic approach for modeling fatigue damage initiation due to cyclic creep in eutectic Pb-Sn solder. Damage mechanics due to cyclic creep is modeled with void nucleation, void growth, and void coalescence model based on micro-structural stress fields. Micro-structural stress states are estimated under viscoplastic phenomena like grain boundary sliding, its blocking at second-phase particles, and diffusional creep relaxation. In Part II of this paper, the developed creep-fatigue damage model is quantified and parametric studies are provided to better illustrate the utility of the developed model.



2002 ◽  
Vol 124 (3) ◽  
pp. 298-304 ◽  
Author(s):  
Pradeep Sharma ◽  
Abhijit Dasgupta

This paper illustrates the micromechanics approach to cyclic creep-fatigue damage of Pb-Sn, developed by the authors with the help of a simple case study. It is demonstrated that durability predictions can be made based solely on monotonic test data. Various parametric studies of practical interest are conducted to obtain mechanistic insights into various aspects of damage in solders e.g., effect of hydrostatic stresses, grain size, ramp rate, etc.



2000 ◽  
Author(s):  
Pradeep Sharma ◽  
Abhijit Dasgupta

Abstract This paper presents a micro-mechanistic approach for modeling fatigue damage initiation due to cyclic creep in eutectic Pb-Sn solder. Damage mechanics due to cyclic creep is modeled with void nucleation, void growth and void coalescence model based on micro-structural stress fields. Micro-structural stress states are estimated under viscoplastic phenomena like grain boundary sliding and its blocking at 2nd phase particles, and diffusional creep relaxation. A conceptual framework is provided to quantify the creep-fatigue damage due to thermo-mechanical cycling. Some parametric studies are provided to better illustrate the utility of the developed model.



Author(s):  
Run-Zi Wang ◽  
Lv-Yi Cheng ◽  
Shun-Peng Zhu ◽  
Peng-Cheng Zhao ◽  
Hideo Miura ◽  
...  


2019 ◽  
Vol 76 ◽  
pp. 263-278 ◽  
Author(s):  
Xuanchen Zhu ◽  
Haofeng Chen ◽  
Fuzhen Xuan ◽  
Xiaohui Chen




2021 ◽  
Vol 173 ◽  
pp. 112830
Author(s):  
Wenhai Guan ◽  
Hyoseong Gwon ◽  
Takanori Hirose ◽  
Hisashi Tanigawa ◽  
Yoshinori Kawamura ◽  
...  
Keyword(s):  


Author(s):  
N. A. Zentuti ◽  
J. D. Booker ◽  
R. A. W. Bradford ◽  
C. E. Truman

An approach is outlined for the treatment of stresses in complex three-dimensional components for the purpose of conducting probabilistic creep-fatigue lifetime assessments. For conventional deterministic assessments, the stress state in a plant component is found using thermal and mechanical (elastic) finite element (FE) models. Key inputs are typically steam temperatures and pressures, with the three principal stress components (PSCs) at the assessment location(s) being the outputs. This paper presents an approach which was developed based on application experience with a tube-plate ligament (TPL) component, for which historical data was available. Though both transient as well as steady-state conditions can have large contributions towards the creep-fatigue damage, this work is mainly concerned with the latter. In a probabilistic assessment, the aim of this approach is to replace time intensive FE runs with a predictive model to approximate stresses at various assessment locations. This is achieved by firstly modelling a wide range of typical loading conditions using FE models to obtain the desire stresses. Based on the results from these FE runs, a probability map is produced and input(s)-output(s) functions are fitted (either using a Response Surface Method or Linear Regression). These models are thereafter used to predict stresses as functions of the input parameter(s) directly. This mitigates running an FE model for every probabilistic trial (of which there typically may be more than 104), an approach which would be computationally prohibitive.



Sign in / Sign up

Export Citation Format

Share Document