mechanical cycling
Recently Published Documents


TOTAL DOCUMENTS

240
(FIVE YEARS 53)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 21 ◽  
pp. e223759
Author(s):  
Flavia Florentino Teixeira da Silva ◽  
André Hayato Saguchi ◽  
Sidnea Aparecida Freitas Paiva ◽  
Guilherme Espósito Pires ◽  
Mariana Isidoro ◽  
...  

Aim: To evaluate the fracture resistance of roots restored with CAD/CAM-fabricated posts, receiving or not intracanal laser treatment, compared with glass fiber posts under mechanical cycling. Methods: Twenty-seven endodontically treated, single-rooted teeth were divided into 3 groups: group 1 (control), prefabricated glass fiber posts relined with resin composite; group 2, CAD/CAM-fabricated intraradicular posts using Resin Nano Ceramic (RNC) blocks; and group 3, CAD/CAM-fabricated intraradicular posts using RNC blocks in canals irradiated with a 940-nm diode laser (100 mJ, 300-um optic fiber, coronal-apical and apical-coronal helical movements, speed of 2 mm/second, 4 times each canal). After cementation of the coping, cyclic loading was applied at an angle of 135° to the long axis of the root, with a pulse load of 130 N, frequency of 2.2 Hz, and 150,000 pulses on the crown at a point located 2 mm below the incisal edge on the lingual aspect of the specimen. Every 50,000 cycles, the specimens were evaluated for root fracture occurring below or above the simulated bone crest. Results were analyzed by one-way ANOVA followed by Tukey’s test (p<0.05). Results: Group 1 was the least resistant, while groups 2 and 3 were the most resistant. Group 1 differed significantly from groups 2 and 3 (p<0.01), but there was no difference between groups 2 and 3 (p<0.01). Conclusion: Treatment of the intracanal surface with diode laser had no influence on fracture resistance of roots restored with CAD/CAM-fabricated posts, but a longer cycling time is required to evaluate the real benefits of diode laser irradiation.


Author(s):  
Yinan Cui ◽  
Kailun Li ◽  
Chan Wang ◽  
Wei Liu

Abstract Additive manufacturing (AM) frequently encounters part quality issues such as geometrical inaccuracy, cracking, warping, etc. This is associated with its unique thermal and mechanical cycling during AM, as well as the material properties. Although many efforts have been spent on this problem, the underlying dislocation evolution mechanism during AM is still largely unknown, despite its essential role in the deformation and cracking behavior during AM and the properties of as-fabricated parts. In this work, a coupling method of three-dimensional dislocation dynamics and finite element method is established to disclose the mechanisms and features of dislocations during AM. Tungsten (W) is chosen as the investigated material due to its wide application. The internal thermal activated nature of dislocation mobility in W is taken into account. The correlations between the combined thermal and mechanical cycles and dislocation evolutions are disclosed. The effect of adding alloying element Ta in W is discussed from the perspectives of tuning dislocation mobility and introducing nanoparticles, which helps to understand why higher dislocation density and fewer microcracks are observed when adding Ta. The current work sheds new light on the long-standing debating of dislocation origin and evolutions in the AM field.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Maria Beatriz Bello Taborda ◽  
Gabriela Sumie Yaguinuma Gonçalves ◽  
Cecília Alves de Sousa ◽  
Wirley Gonçalves Assunção

Purpose. The aim was to evaluate the effect of different metallic alloys used in the manufacture of retention screws for universal cast to long abutment (UCLA) abutments for external hexagon (HE) and Morse taper (MT) connection implants, as well as of mechanical cycling on torque maintenance and fracture resistance through electromechanical fatigue testing by mastication followed by compression testing. Methods. Sixty implants were used, 30 MT and 30 HE, with their respective titanium UCLA abutments and retention screws of 5 different materials (n = 6): Ti cp grade 2, Ti cp grade 4, Ti cp grade 4 hard, Ti grade 5—Ti6Al4V and surgical steel (DSP® Biomedical). The assemblies were positioned in an electromechanical masticatory fatigue testing machine. The fracture strength test was performed by compression testing in a universal testing machine EMICDL-200. Results. The cycled screws and new screws of each alloy group for each connection type were evaluated, obtaining the maximum force (FM), in order to verify the effect of mechanical cycling. The data were tabulated and submitted to appropriate statistical analysis (α = 0.05). Conclusion. It was concluded that for the MT, the alloy with the best performance was steel, both in the maintenance of torque and in the compression test, and cycling negatively influenced the maintenance of preload for this connection. The alloy material did not influence torque maintenance for HE. The new screws that were subjected to EMIC showed higher strength. The alloy with the lowest strength was Ti grade 2.


2021 ◽  
Author(s):  
Mohd Aminul Hoque ◽  
Mohammad Ashraful Haq ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract Solder joints in electronic packages often experience fatigue failures due to cyclic mechanical stresses and strains in fluctuating temperature environments. These stresses and strains are induced by mismatches in coefficients of thermal expansion, and lead to damage accumulation that contributes to crack initiation, crack propagation, and eventually to failure. In this study, we have tried to compare the effects of elevated mechanical cycling on SAC305 and SAC+Bi (SAC_Q). Initially, small uniaxial cylindrical samples of both alloys were prepared and reflowed in a reflow oven. These samples were then mechanically cycled for various durations at testing temperatures of 100 °C. The measured cyclic stress-strain curves were used to characterize the evolution of the hysteresis loop properties (peak stress, hysteresis loop area, and plastic strain range) with high temperature mechanical cycling. In addition, uniaxial tensile tests and creep tests were also conducted on specimens that had been previously mechanically cycled for various durations (e.g 0, 50, 100, 200, and 300 cycles) at an elevated temperature. This allowed us to study the evolution of the constitutive behavior of the solder alloys that occurred during the high temperature mechanical cycling due to the fatigue damage that builds up in the specimens. The reductions in the properties that occur during high temperature mechanical cycling were also correlated with the corresponding changes in the microstructure of the specimens. Rectangular cross-sectioned samples of the two lead free solder alloys were polished and selected regions indented to track the changes in the microstructure of a fixed region with mechanical cycling at T = 100 °C. Using the results of this study, we are working to develop better fatigue criteria for lead free solders which are subjected to variable temperature applications.


Mechanika ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 385-391
Author(s):  
Ghusoon Ridha Mohammed Ali ◽  
Ethar Mohammed Mubarak ◽  
Basim Hussein Abbas

In industrial fields, thermal fatigue behavior has recently acquired an important role which is mainly related to the interaction between mechanical and thermal conditions. This paper proposes a thermal fatigue model of H13 tool steel under thermos-mechanical cycles. A test apparatus was used to assess the thermal fatigue resistance of materials to estimate surface crack area when specimens are subjected to thermal cycling. Thermal cycling up to 700°C was used, and crack patterns were examined after 1850, 3000, and 5000 cycles. Temperature distributions were measured at different locations in the test specimens. A model was developed to establish a relationship between mechanical cycling and thermal analysis. From the results, the thermal fatigue resistance was significantly improved over the control parameter after heating and cooling during thermomechanical cycles. The model was applied to determine the best performance and in-service life of die casting tools.


Oral ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 300-306
Author(s):  
Leonardo Jiro Nomura Nakano ◽  
Laís Carolina Landim Gomes ◽  
Talita Suelen de Queiroz ◽  
Tarcisio José de Arruda Paes-Junior

The aim of this study was to compare the screw removal torque of mini-conical prosthetic components and straight trunnion of indexed morse taper implants after mechanical cycling. The sample consisted of 40 implants and 20 mini-conical prosthetic components (MC group) and 20 straight trunnion components (ST group). Each group consisted of 10 specimens, with 2 implants in each, and cobalt–chromium metallic crowns were screwed into each sample. The components of the MC group received a torque of 20 N-cm with a digital torque wrench, and after 10 min were retightened with the same value as the initial torque. The components of the ST group received a torque of 30 N-cm, with a digital torque wrench, and after 10 min, they were retightened with the same value. The screws of the respective crowns of the two groups received a torque of 10 N-cm and after 10 min were retightened with the same value. Each group was subjected to the fatigue test in a mechanical cycler at 2,000,000 cycles, with a load of 250 N and frequency of 4 Hz. At the end of the fatigue test, the loosening torque of each screw of the specimens was measured through a digital torque wrench. The data were analyzed by two-way ANOVA and a Tukey test. In both groups, there were loss of torque. The results showed no statistic difference between MC and ST groups (p > 0.05).


2021 ◽  
Vol 4 (5) ◽  
pp. 21410-21425
Author(s):  
Francisca Daniele Jardilino Silami ◽  
Cristian Sbardelotto ◽  
Rafaella Tonani- Torrieri ◽  
Rossana Pereira de Almeida ◽  
Carolina Noronha Ferraz de Arruda ◽  
...  

Objective: This study evaluated the color stability and translucence of resin cements in the fixation of ceramic veneers submitted to aging protocols. Material and Methods: Buccal faces of bovine incisors were planed up to dentin. Eighty ceramic veneers (1 mm) were prepared using two pressed ceramics (IPS e-maxPress and IPS e-maxZirpress, IvoclarVivadent). Before the initial color and translucence readouts (Vita EasyShade, VITA), the veneers were fixed with light (Variolink II, Ivoclar/Vivadent) or dual cured (Relyx U200, 3M ESPE) cements. The samples were submitted (n=10) to thermal mechanical cycling (1.200.000 cycles, 1,3Hz, 5°C/37°C/55°C); and no aging protocol (control). New color and translucence readouts were performed. The cement thickness was quantified by a double coordinate stereomicroscope (Nikon Measurescope) as a control of the study. Results: Data (3-way ANOVA, Tukey, p0,05) showed difference (p0.05) in the color change for both ceramics cemented with U200 with no aging protocol. In the other groups, there was no significant difference (p0.05). There was no difference for translucence regardless ceramics, cements, or aging protocol. Thermal mechanical cycling was not significant for optical changes of the ceramics tested. Conclusions: It was concluded that the color stability and translucence of ceramics with thickness of 1mm were not influenced by the cement when submitted to thermal mechanical cycling. 


Author(s):  
Leonardo Jiro Nomura Nakano ◽  
Laís Carolina Landim Gomes ◽  
Talita Suelen de Queiroz ◽  
Tarcisio José de Arruda Paes-Junior

The aim of this study was to compare the screw removal torque of mini conical prosthetic components and straight trunnion of indexed morse taper implants, after mechanical cycling. The sample consisted of 40 implants and 20 mini-conical prosthetic components (MC group) and 20 straight trunnion components (ST group). Each group consisted of 10 specimens, with 2 implants in each, and cobalt-chromium metallic crowns were screwed into each sample. The components of the MC group received a torque of 20 N.cm with a digital torque wrench and after 10 minutes were retightened with the same value as the initial torque. The components of the ST group received a torque of 30 N.cm, with a digital torque wrench and after 10 minutes, they were retightened with the same value. The screws of the respective crowns of the two groups received a torque of 10 N.cm and after 10 minutes were retightened with the same value. Each group was subjected to the fatigue test in a mechanical cycler at 2.000.000 cycles, with a load of 250 N and frequency of 4 Hz. At the end of the fatigue test, the loosening torque of each screw of the specimens was measured through a digital torque wrench. The data were analyzed by two-way ANOVA and Tukey test. In both groups, there were loss of torque. The results showed no statistic difference between MC and ST groups.


Sign in / Sign up

Export Citation Format

Share Document