scholarly journals Quantum Wells and Ultrathin Metallic Films

Author(s):  
Victor Barsan
Keyword(s):  
2007 ◽  
Vol 21 (10) ◽  
pp. 615-623
Author(s):  
R. VILLAGÓMEZ

This letter deals with the experimental observation of oscillations in the infrared reflectance from Nb ultra-thin films deposited on α-type SiO 2 substrates. P-polarized reflectance (Rp) measurements are made using a tunable p-polarized CO 2 waveguide laser using wavelengths between 9.2 and 10.4 μm. Several Nb/SiO 2 quantum wells were specially made by the RF sputtering technique. Tailored thicknesses run between 5.5 and 55 Å. Because of the strong influence from the chosen substrate, IR reflectivity was fitted to the optical response of our metal-substrate system by using the three-oscillator model and numerical calculations on the basis of the local field calculation for a single metallic quantum well. Although quantum size effects are well studied in semiconductor compounds, there are only a few studies of this effect in metallic films where the present investigation has its most important contribution.


Author(s):  
J. Silcox ◽  
R. H. Wade

Recent work has drawn attention to the possibilities that small angle electron scattering offers as a source of information about the micro-structure of vacuum condensed films. In particular, this serves as a good detector of discontinuities within the films. A review of a kinematical theory describing the small angle scattering from a thin film composed of discrete particles packed close together will be presented. Such a model could be represented by a set of cylinders packed side by side in a two dimensional fluid-like array, the axis of the cylinders being normal to the film and the length of the cylinders becoming the thickness of the film. The Fourier transform of such an array can be regarded as a ring structure around the central beam in the plane of the film with the usual thickness transform in a direction normal to the film. The intensity profile across the ring structure is related to the radial distribution function of the spacing between cylinders.


Author(s):  
A. Carlsson ◽  
J.-O. Malm ◽  
A. Gustafsson

In this study a quantum well/quantum wire (QW/QWR) structure grown on a grating of V-grooves has been characterized by a technique related to chemical lattice imaging. This technique makes it possible to extract quantitative information from high resolution images.The QW/QWR structure was grown on a GaAs substrate patterned with a grating of V-grooves. The growth rate was approximately three monolayers per second without growth interruption at the interfaces. On this substrate a barrier of nominally Al0.35 Ga0.65 As was deposited to a thickness of approximately 300 nm using metalorganic vapour phase epitaxy . On top of the Al0.35Ga0.65As barrier a 3.5 nm GaAs quantum well was deposited and to conclude the structure an additional approximate 300 nm Al0.35Ga0.65 As was deposited. The GaAs QW deposited in this manner turns out to be significantly thicker at the bottom of the grooves giving a QWR running along the grooves. During the growth of the barriers an approximately 30 nm wide Ga-rich region is formed at the bottom of the grooves giving a Ga-rich stripe extending from the bottom of each groove to the surface.


Author(s):  
RAD Mackenzie ◽  
G D W Smith ◽  
A. Cerezo ◽  
J A Liddle ◽  
CRM Grovenor ◽  
...  

The position sensitive atom probe (POSAP), described briefly elsewhere in these proceedings, permits both chemical and spatial information in three dimensions to be recorded from a small volume of material. This technique is particularly applicable to situations where there are fine scale variations in composition present in the material under investigation. We report the application of the POSAP to the characterisation of semiconductor multiple quantum wells and metallic multilayers.The application of devices prepared from quantum well materials depends on the ability to accurately control both the quantum well composition and the quality of the interfaces between the well and barrier layers. A series of metal organic chemical vapour deposition (MOCVD) grown GaInAs-InP quantum wells were examined after being prepared under three different growth conditions. These samples were observed using the POSAP in order to study both the composition of the wells and the interface morphology. The first set of wells examined were prepared in a conventional reactor to which a quartz wool baffle had been added to promote gas intermixing. The effect of this was to hold a volume of gas within the chamber between growth stages, leading to a structure where the wells had a composition of GalnAsP lattice matched to the InP barriers, and where the interfaces were very indistinct. A POSAP image showing a well in this sample is shown in figure 1. The second set of wells were grown in the same reactor but with the quartz wool baffle removed. This set of wells were much better defined, as can be seen in figure 2, and the wells were much closer to the intended composition, but still with measurable levels of phosphorus. The final set of wells examined were prepared in a reactor where the design had the effect of minimizing the recirculating volume of gas. In this case there was again further improvement in the well quality. It also appears that the left hand side of the well in figure 2 is more abrupt than the right hand side, indicating that the switchover at this interface from barrier to well growth is more abrupt than the switchover at the other interface.


1998 ◽  
Vol 184-185 (1-2) ◽  
pp. 288-292
Author(s):  
T Taliercio
Keyword(s):  

1998 ◽  
Vol 184-185 (1-2) ◽  
pp. 984-987
Author(s):  
P Leisching

Sign in / Sign up

Export Citation Format

Share Document