relative absorption
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 12)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 14 (1) ◽  
pp. 181
Author(s):  
Young-Sun Son ◽  
Gilljae Lee ◽  
Bum Han Lee ◽  
Namhoon Kim ◽  
Sang-Mo Koh ◽  
...  

Numerous reports have successfully detected or differentiated carbonate minerals such as calcite and dolomite by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). However, there is a need to determine whether existing methods can differentiate magnesite from other carbonate minerals. This study proposes optimal band ratio combinations and new thresholds to distinguish magnesite, dolomite, and calcite using ASTER shortwave-infrared (SWIR) data. These were determined based on the spectral and chemical analysis of rock samples collected from Liaoning, China and Danchon, North Korea and the reflectance values from ASTER images. The results demonstrated that the simultaneous use of thresholds 2.13 and 2.015 for relative absorption band depths (RBDs) of (6 + 8)/7 and (7 + 9)/8, respectively, was the most effective for magnesite differentiation. The use of RBDs and band ratios to discriminate between dolomite and calcite was sufficiently effective. However, talc, tremolite, clay, and their mixtures with dolomite and calcite, which are commonly found in the study area, hampered the classification. The assessment of the ASTER band ratios for magnesite grade according to magnesium oxide content indicated that a band ratio of 5/6 was the most effective for this purpose. Therefore, this study proved that ASTER SWIR data can be effectively utilized for the identification and grade assessment of magnesite on a regional scale.


2021 ◽  
Vol 657 ◽  
pp. A36
Author(s):  
A. Lira-Barria ◽  
P. M. Rojo ◽  
R. A. Mendez

Context. Collecting a large variety of exoplanetary atmosphere measurements is crucial to improve our understanding of exoplanets. In this context, it is likely that the field would benefit from broad species surveys, particularly using transit spectroscopy, which is the most successful technique of exoplanetary atmosphere characterization so far. Aims. Our goal is to develop a model-unbiased technique using transit spectroscopy to analyze every qualified atomic spectral line in exoplanetary transit data, and search for relative absorption, that is, a decrease in the flux of the line when the planet is transiting. Methods. We analyzed archive data from HDS at Subaru, HIRES at Keck, UVES at VLT, and HARPS at LaSilla to test our spectral survey methodology. It first filtered individual lines by relative noise levels. It also corrected for spectral offsets and telluric contamination. Our methodology performed an analysis along time and wavelength. The latter employed a bootstrap corroboration. Results. We highlight the possible detections of Mn I and V II in HD 209459b data taken by HDS at Subaru (5.9σ at 5916.4 Å, 5.1σ at 6021.8 Å). The previous detection of Ca I in the same planet is classified as inconclusive by our algorithm, but we support the previous detection of Sc II (3.5σ at 6604.6 Å). We also highlight the possible detection of Ca I, Sc II, and Ti II in HD 189733 data taken by UVES at VLT (4.4σ at 6572.8 Å, 6.8σ at 6604.6 Å, and 3.5σ at 5910.1 Å), in addition to the possible detection of Al I in WASP-74b data taken by UVES at VLT (5.6σ at 6696.0 Å).


2021 ◽  
Vol 8 ◽  
Author(s):  
Tomonori Isada ◽  
Hiroya Abe ◽  
Hiromi Kasai ◽  
Masahiro Nakaoka

Coastal oceans interacting with terrestrial ecosystems play an important role in biogeochemical cycles. It is therefore essential to research land–ocean interactions for further understanding of the processes influencing nutrients dynamics in coastal areas. We investigated the seasonal and spatial distribution of nutrient concentrations and light absorption coefficients of colored dissolved organic matter (CDOM), non-algal particles (NAP), and phytoplankton in a wetland-influenced river–eelgrass meadows–coastal waters continuum in the protected and semi-enclosed coastal sea of Akkeshi-ko estuary (AKE) and Akkeshi Bay (AB), Japan from April 2014 to February 2015. The mixing dilution lines of the CDOM absorption coefficient at 355 nm [aCDOM(355)] relative to salinity predicted by two end-members between freshwater and coastal water showed conservative mixing in AB. Silicate concentrations were significantly correlated with salinity and aCDOM(355) in AB in each month except for December 2014. These results suggest that silicate and CDOM in AB primarily originates from wetland-influenced river discharge. However, samples collected from the eelgrass meadows of AKE, where mariculture is developed, showed non-conservative mixing of silicate concentrations and aCDOM(355) with salinity except for June 2014. Elevated phosphate concentrations, probably released from sediments, were also found in the eelgrass meadows of AKE, especially during summer. These results suggest that the metabolic activities of mariculture and seagrass ecosystem significantly contribute to the nutrient cycles and CDOM absorption in AKE and to the distinct water-mass systems inside and outside AKE. The relative absorption properties of NAP [aNAP(443)], phytoplankton [aph(443)], and aCDOM(443) showed that CDOM is the main factor affecting the light distribution in AKE. However, the relative absorption properties varied seasonally in AB because of spring and autumn phytoplankton blooms and ice cover during winter. Significant relationships were observed between the Secchi disk depth (ZSD), aNAP(443), and aCDOM(443). Chl a concentration and aph(443) were not good indicators for predicting ZSD in our study region. These results suggest that incorporating inherent optical properties and CDOM from mariculture and seagrass ecosystem into ecosystem models could improve predictions of light distribution along the freshwater–eelgrass–coastal waters continuum in optically complex coastal waters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. Boqué ◽  
R. M. Valls ◽  
A. Pedret ◽  
F. Puiggrós ◽  
L. Arola ◽  
...  

AbstractThe purpose of the present study was to compare the relative absorption of a new powder presentation of silicon (Si) as orthosilicic acid with maltodextrin (Orgono Powder) compared to usual Si liquid presentations as orthosilicic acid with Equisetum arvense and Rosmarinus officinalis (G5 Siliplant) and orthosilicic acid with aloe vera (G7 Aloe). All dietary supplements were administered at the same Si oral dose (21.6 mg) in a randomized, double-blind, crossover post-prandial study conducted in 5 healthy men. Urine was collected at baseline and over the 6-h post-dose period in 2 separate 3-h collections for the analysis of Si concentration, which was conducted by inductively coupled plasma optical emission spectrometry as the gold standard method. No significant differences in total urinary Si excretion were found after the intake of these 3 dietary supplements; 34.6%, 32.4% and 27.2% of the ingested Si from G7 Aloe, G5 Siliplant and Orgono Powder, respectively, was excreted in urine over the 6-h follow-up period. The 3 different oral Si formulations tested, in powder and liquid presentations, provide highly bioavailable Si and present an equivalent relative absorption in healthy humans.


2021 ◽  
Author(s):  
Nicholas J. Rommelfanger ◽  
Zihao Ou ◽  
Carl H.C. Keck ◽  
Guosong Hong

Nanoparticles with strong absorption of incident radio frequency (RF) or microwave irradiation are desirable for remote hyperthermia treatments. While controversy has surrounded the absorption properties of spherical metallic nanoparticles, other geometries such as prolate and oblate spheroids have not received sufficient attention for application in hyperthermia therapies. Here, we use the electrostatic approximation to calculate the relative absorption ratio of metallic nanoparticles in various biological tissues. We consider a broad parameter space, sweeping across frequencies from 1 MHz to 10 GHz, while also tuning the nanoparticle dimensions from spheres to high-aspect-ratio spheroids approximating nanowires and nanodiscs. We find that while spherical metallic nanoparticles do not offer differential heating in tissue, large absorption cross sections can be obtained from long prolate spheroids, while thin oblate spheroids offer minor potential for absorption. Our results suggest that metallic nanowires should be considered for RF- and microwave-based wireless hyperthermia treatments in many tissues going forward.


2021 ◽  
Author(s):  
Kamal Kayed ◽  
Dalal Baba Kurd

Abstract In this article, silicon wafers were thermal treated in air at temperatures from 800 to 1200°C. The annealed samples were investigated using X-ray diffraction, FTIR and optical reflection spectroscopy. Unique result obtained includes that, that Kubelk-Munk curves could be utilized to estimate the ratio of oxidized silicon atoms. In addition, we found that these curves could provide information on the degree to which the nanoparticle formation affects both the reflection spectra and the energy gap of the Si/SiO2 composites. On the other hand, it has been found that, the intensity of the silicon peak in XRD spectra is proportional to the relative absorption coefficient of amorphous silicon oxide.


2021 ◽  
Author(s):  
Kamal Kayed ◽  
Dalal Baba Kurd

Abstract In this article, silicon wafers were thermal treated in air at temperatures from 800 to 1200 °C. The annealed samples were investigated using X-ray diffraction, FTIR and optical reflection spectroscopy. Unique result obtained includes that, that Kubelk-Munk curves could be utilized to estimate the ratio of oxidized silicon atoms. In addition, we found that these curves could provide information on the degree to which the nanoparticle formation affects both the reflection spectra and the energy gap of the Si/SiO2 composites. On the other hand, it has been found that, the intensity of the silicon peak in XRD spectra is proportional to the relative absorption coefficient of amorphous silicon oxide.


2020 ◽  
Vol 642 ◽  
pp. A122
Author(s):  
R. Benton Metcalf ◽  
Nicolas Tessore ◽  
Rupert A. C. Croft

We demonstrate a method for reconstructing the weak lensing potential from the Lyman-α forest data. We derive an optimal estimator for the lensing potential on the sky based on the correlation between pixels in real space. This method effectively deals with irregularly spaced data, holes in the survey, missing data, and inhomogeneous noise. We demonstrate an implementation of the method with simulated spectra and weak lensing. It is shown that with a source density of ≳0.5 per square arcmin and ∼200 pixels in each spectrum (λ/Δλ = 1300) the lensing potential can be reconstructed with high fidelity if the relative absorption in the spectral pixels is signal dominated. When noise dominates the measurement of the absorption in each pixel the noise in the lensing potential is higher, but for reasonable numbers of sources and noise levels and a high fidelity map the lensing potential is obtainable. The lensing estimator could also be applied to lensing of the cosmic microwave background, 21 cm intensity mapping, or any case in which the correlation function of the source can be accurately estimated.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 569
Author(s):  
Bin-Bin Sun ◽  
Bing-Hua Yao ◽  
Yang-Qing He ◽  
Bo Yang

The synthesis of 1,3,3-trimethyl-9′-acryloxyspiro[indoline-2,3′(3H)naphtho[2,1-b][l,4]-oxazine] (AISO) was carried out by catalytic esterification of 1,3,3-trimethyl-9′-hydroxyspiro-[indoline-2,3′(3H)naphtho[2,1-b][l,4]oxazine] (SO–OH) and acrylic acid in the presence of 1,3-dicyclohexylcarbodiimide (DCC) and N-dimethylaminopyridine (DMAP). Then, the synthesis of the target copolymer (NC-g-AISO) was was carried out by benzoyl peroxide (BPO)-induced graft copolymerization of the AISO monomer onto nitrocellulose (NC) in a homogeneous methyl isobutyl ketone medium. The structure of NC-g-AISO was characterized by Fourier transform infrared (IR) spectroscopy, 13C Nuclear Magnetic Resonance (NMR) spectra and thermogravimetric (TG) analysis. The photochromic properties of NC-g-AISO were investigated by examining UV–Vis spectra in ethyl acetate solution and solid membrane. Compared with the AISO monomer in ethyl acetate solution, the thermal color decay stability of the colored form of NC-g-AISO in ethyl acetate solution and in solid membrane improved significantly. The thermal color decay reaction rate constants in ethyl acetate solution and membrane at 25 °C were 1.77 × 10–2 and 1.36 × 10–3 s–1, respectively, fitted using the first-order reaction equation. After ten photochromic cycles, the relative absorption intensity of the colored form of NC-g-AISO decreased by 0.85%, indicating that the NC-g-AISO membrane has good reversible photochromic behavior.


Sign in / Sign up

Export Citation Format

Share Document