scholarly journals Darcy-Forchheimer Flow of Casson Nanofluid with Heat Source/Sink: A Three-Dimensional Study

Author(s):  
Gosikere Kenchappa Ramesh
2022 ◽  
Vol 421 ◽  
pp. 126927
Author(s):  
Thirupathi Thumma ◽  
S.R. Mishra ◽  
M. Ali Abbas ◽  
M.M. Bhatti ◽  
Sara I. Abdelsalam

Author(s):  
T. Hayat ◽  
S.A. Shehzad ◽  
A. Alsaedi

Purpose – The purpose of this paper is to investigate the three-dimensional flow of Maxwell fluid with variable thermal conductivity in presence of heat source/sink. Design/methodology/approach – Similarity transformations are utilized to reduce the nonlinear partial differential equations into ordinary differential equations. The governing nonlinear problems are solved by homotopy analysis method. Findings – The paper found that the velocities decrease while temperature increases for higher Hartman number. It is also seen that the thermal boundary layer thickness and temperature are increased with an increase in variable thermal conductivity parameter and heat source/sink parameter. Practical implications – Heat transfer analysis with heat source/sink has pivotal role in many industrial applications like cooling of an infinite metallic plate in a cooling bath, drawing of plastic films, nuclear plants, gas turbines, various propulsion devices for missiles, space vehicles and processes occurring at high temperatures. Originality/value – This study discusses the magnetohydrodynamic three-dimensional flow of Maxwell fluid with variable thermal conductivity and heat source/sink. No such analysis exists in the literature yet.


2016 ◽  
Vol 21 (2) ◽  
pp. 393-406
Author(s):  
M. Madhu ◽  
B. Balaswamy ◽  
N. Kishan

AbstractAn analysis is made to study a three dimensional MHD boundary layer flow and heat transfer due to a porous axisymmetric shrinking sheet. The governing partial differential equations of momentum and energy are transformed into self similar non-linear ordinary differential equations by using the suitable similarity transformations. These equations are, then solved by using the variational finite element method. The flow phenomena is characterised by the magnetic parameterM, suction parameterS, porosity parameterKp, heat source/sink parameterQ, Prandtl number Pr, Eckert number Ec and radiation parameterRd. The numerical results of the velocity and temperature profiles are obtained and displayed graphically.


Author(s):  
Chalavadi Sulochana ◽  
Samrat S. Payad ◽  
Naramgari Sandeep

This study deals with the three-dimensional magnetohydrodynamic Casson fluid flow, heat and mass transfer over a stretching surface in the presence of non-uniform heat source/sink, thermal radiation and Soret effects. The governing partial differential equations are transformed to nonlinear ordinary differential equations by using similarity transformation, which are then solved numerically using Runge-Kutta based shooting technique. We obtained good accuracy of the present results by comparing with the exited literature. The influence of dimensionless parameters on velocity, temperature and concentration profiles along with the friction factor, local Nusselt and Sherwood numbers are discussed with the help of graphs and tables. It is found that the positive values of non-uniform heat source/sink parameters acts like heat generators and helps to develop the temperature profiles of the flow.


Sign in / Sign up

Export Citation Format

Share Document