scholarly journals Cellular and Ultrastructure Alteration of Plant Roots in Response to Metal Stress

Author(s):  
Hamim Hamim ◽  
Miftahudin Miftahudin ◽  
Luluk Setyaningsih
Keyword(s):  

Author(s):  
Saravanakumar A ◽  
Gandhimathi R

Polygonum glabrum is being used in traditional and folklore medicine to treat pneumonia and jaundice. Plant roots are used in ayurvedic preparations to treat fever and colic. The leaves are used as diuretic agents and process vermifuge action. Plant decoction is also used in the treatment of Rheumatism. Besides having many uses and folklore claims, herbal medicines are to be thoroughly investigated for their toxicity also. Therefore this work is being carried out to examine the toxicity of the drug and established dose is safe to use in the clinical stage. The current research studied the acute and chronic toxicity of Polygonum glabrum root extract in rats. It is proved that there was no change in any parameter tested both in acute and chronic toxicity, which means the extract is safe and non-toxic at the dose of 2g/kg also.





Biomics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 329-336
Author(s):  
A.R. Lubyanova ◽  
F.M. Shakirova ◽  
M.V. Bezrukova

We studied the immunohistochemical localization of abscisic acid (ABA), wheat germ agglutinin (WGA) and dehydrins in the roots of wheat seedlings (Triticum aestivum L.) during 24-epibrassinolide-pretreatment (EB-pretreatment) and PEG-induced dehydration. It was found coimmunolocalization of ABA, WGA and dehydrins in the cells of central cylinder of basal part untreated and EB-pretreated roots of wheat seedlings under normal conditions and under osmotic stress. Such mutual localization ABA and protective proteins, WGA and dehydrins, indicates the possible effect of their distribution in the tissues of EB-pretreated wheat roots during dehydration on the apoplastic barrier functioning, which apparently contributes to decrease the water loss under dehydration. Perhaps, the significant localization of ABA and wheat lectin in the metaxylem region enhances EB-induced transport of ABA and WGA from roots to shoots under stress. It can be assumed that brassinosteroids can serve as intermediates in the realization of the protective effect of WGA and wheat dehydrins during water deficit.



2010 ◽  
Vol 18 (2) ◽  
pp. 365-370
Author(s):  
Shui-Hong YAO ◽  
Yan-Qing LIU ◽  
Qing-Hai WANG ◽  
Bo XIAO ◽  
Dian-Li SONG


Botany ◽  
2018 ◽  
Vol 96 (3) ◽  
pp. 175-186 ◽  
Author(s):  
Kwang-Yeol Yang ◽  
Stephanie Doxey ◽  
Joan E. McLean ◽  
David Britt ◽  
Andre Watson ◽  
...  

Formulations that include nanoparticles of CuO and ZnO are being considered for agricultural applications as fertilizers because they act as sources of Cu or Zn. Currently, few studies of the effects of these nanoparticles (NPs) consider the three-way interactions of NPs with the plant plus its microbiome. At doses that produced root shortening by both nanoparticles (NPs), CuO NPs induced the proliferation of elongated root hairs close to the root tip, and ZnO NPs increased lateral root formation in wheat seedlings (Triticum aestivum L.). These responses occurred with roots colonized by a beneficial bacterium, Pseudomonas chlororaphis O6 (PcO6), originally isolated from roots of wheat grown under dryland farming in calcareous soils. The PcO6-induced tolerance to drought stress in wheat seedlings was not impaired by the NPs. Rather, growth of the PcO6-colonized plants with NPs resulted in systemic increases in the expression of genes associated with tolerance to water stress. Increased expression in the shoots of other genes related to metal stress was consistent with higher levels of Cu and Zn in PcO6-colonized shoots grown with the NPs. This work demonstrates that plants grown with CuO or ZnO NPs showed cross-protection from different challenges such as metal stress and drought.



2021 ◽  
pp. 1891755
Author(s):  
Ciro Cabal ◽  
Ricardo Martinez-Garcia ◽  
Aurora de Castro ◽  
Fernando Valladares ◽  
Stephen W. Pacala
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document