scholarly journals Woody Feedstock Pretreatments to Enhance Pyrolysis Bio-oil Quality and Produce Transportation Fuel

Author(s):  
Hamid Rezaei ◽  
Fahimeh Yazdanpanah ◽  
Jim Choon Lim ◽  
Anthony Lau ◽  
Shahab Sokhansanj
2020 ◽  
Vol 26 (5) ◽  
pp. 200382-0
Author(s):  
Narayan Lal Panwar ◽  
Arjun Sanjay Paul

Bio-oil produced from the fast pyrolysis/hydrothermal liquefaction is gaining popularity worldwide as the forerunner to replace fossil fuel. The bio-oil can be produced from agricultural waste, forest residue, and urban organic waste. It is also called pyrolysis oil, renewable fuel, and has the potential to be used as fuel in many applications. The application of bio-oil as transportation fuel helps to reduce the emission of greenhouse gases and to keep up the ecological balance. The bio-oil has the heating value of nearly half of the diesel fuel i.e. 16-19 MJ/kg; but, the inferior properties such as high water content, high viscosity, low pH, and poor stability hinder bio-oil application as a fuel. Thus, this paper provides a detailed review of bio-oil properties, its limitations and focuses on the recent development of different upgrading and separation techniques, used to date for the improvement of the bio-oil quality. Furthermore, the advantages and disadvantages of each upgrading method along with the application and environmental impact of bio-oil are also discussed in this article.


2020 ◽  
Vol 7 (1) ◽  
pp. 29-36
Author(s):  
Antonina A. Stepacheva ◽  
Mariia E. Markova ◽  
Yury V. Lugovoy ◽  
Kirill V. Chalov ◽  
Mikhail G. Sulman ◽  
...  

AbstractHydrotreatment of bio-oil oxygen compounds allows the final product to be effectively used as a liquid transportation fuel from biomass. Deoxygenation is considered to be one of the most promising ways for bio-oil upgrading. In the current work, we describe a novel approach for the deoxygenation of bio-oil model compounds (anisole, guaiacol) using supercritical fluids as both the solvent and hydrogen-donors. We estimated the possibility of the use of complex solvent consisting of non-polar n-hexane with low critical points (Tc = 234.5 ºC, Pc = 3.02 MPa) and propanol-2 used as H-donor. The experiments were performed without catalysts and in the presence of noble and transition metals hydrothermally deposited on the polymeric matrix of hypercrosslinked polystyrene (HPS). The experiments showed that the presence of 20 vol. % of propanol-2 in n-hexane results in the highest (up to 99%) conversion of model compounds. When the process was carried out without a catalyst, phenols were found to be a major product yielding up to 95 %. The use of Pd- and Co-containing catalyst yielded 90 % of aromatic compounds (benzene and toluene) while in the presence of Ru and Ni cyclohexane and methylcyclohexane (up to 98 %) were the main products.


2018 ◽  
Vol 33 (1) ◽  
pp. 397-412 ◽  
Author(s):  
Andreas Eschenbacher ◽  
Peter Arendt Jensen ◽  
Ulrik Birk Henriksen ◽  
Jesper Ahrenfeldt ◽  
Chengxin Li ◽  
...  
Keyword(s):  

2019 ◽  
Vol 128 ◽  
pp. 105333 ◽  
Author(s):  
Brenda J. Alvarez-Chavez ◽  
Stéphane Godbout ◽  
Joahnn H. Palacios-Rios ◽  
Étienne Le Roux ◽  
Vijaya Raghavan

2014 ◽  
Vol 31 (12) ◽  
pp. 2229-2236 ◽  
Author(s):  
Boonyawan Yoosuk ◽  
Jiraporn Boonpo ◽  
Parncheewa Udomsap ◽  
Sittha Sukkasi

2016 ◽  
Vol 7 (8) ◽  
pp. 1381 ◽  
Author(s):  
Dijan Supramono ◽  
Jonathan Jonathan ◽  
Haqqyana Haqqyana ◽  
Setiadi Setiadi ◽  
Mohammad Nasikin

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Hyeon Koo Kang ◽  
In-Gu Lee ◽  
Kyong-Hwan Lee ◽  
Beom-Sik Kim ◽  
Tae Su Jo ◽  
...  

Catalytic rapid pyrolysis ofQuercus variabilis, a Korean native tree species, was carried out using Py-GC/MS. Mesoporous MFI, which has both nanopores and micropores, and three nanoporous materials, Al-MCM-41, Al-SBA-15, andγ-Al2O3, were used as the catalyst. The acid sites of mesoporous MFI were strong Brønsted acid sites, whereas those of nanoporous materials were mostly weak acid sites. The composition of the product bio-oil varied greatly depending on the acid characteristics of the catalyst used. Phenolics were the most abundant species in the bio-oil, followed by acids and furanics, obtained over Al-MCM-41 or Al-SBA-15 with weak acid sites, whereas aromatics were the most abundant species produced over mesoporous MFI with strong acid sites, followed by phenolics. Aromatics, phenolics, and furanics are all important chemicals contributing to the improvement of bio-oil quality.


Sign in / Sign up

Export Citation Format

Share Document