scholarly journals Intermittent Hypoxia and Obstructive Sleep Apnea: Mechanisms, Interindividual Responses and Clinical Insights

Author(s):  
Lena Lavie
2009 ◽  
Vol 106 (5) ◽  
pp. 1538-1544 ◽  
Author(s):  
Mariam Louis ◽  
Naresh M. Punjabi

Accumulating evidence suggests that obstructive sleep apnea is associated with alterations in glucose metabolism. Although the pathophysiology of metabolic dysfunction in obstructive sleep apnea is not well understood, studies of murine models indicate that intermittent hypoxemia has an important contribution. However, corroborating data on the metabolic effects of intermittent hypoxia on glucose metabolism in humans are not available. Thus the primary aim of this study was to characterize the acute effects of intermittent hypoxia on glucose metabolism. Thirteen healthy volunteers were subjected to 5 h of intermittent hypoxia or normoxia during wakefulness in a randomized order on two separate days. The intravenous glucose tolerance test (IVGTT) was used to assess insulin-dependent and insulin-independent measures of glucose disposal. The IVGTT data were analyzed using the minimal model to determine insulin sensitivity (SI) and glucose effectiveness (SG). Drops in oxyhemoglobin saturation were induced during wakefulness at an average rate of 24.3 events/h. Compared with the normoxia condition, intermittent hypoxia was associated with a decrease in SI [4.1 vs. 3.4 (mU/l)−1·min−1; P = 0.0179] and SG (1.9 vs. 1.3 min−1×10−2, P = 0.0065). Despite worsening insulin sensitivity with intermittent hypoxia, pancreatic insulin secretion was comparable between the two conditions. Heart rate variability analysis showed the intermittent hypoxia was associated with a shift in sympathovagal balance toward an increase in sympathetic nervous system activity. The average R-R interval on the electrocardiogram was 919.0 ms during the normoxia condition and 874.4 ms during the intermittent hypoxia condition ( P < 0.04). Serum cortisol levels after intermittent hypoxia and normoxia were similar. Hypoxic stress in obstructive sleep apnea may increase the predisposition for metabolic dysfunction by impairing insulin sensitivity, glucose effectiveness, and insulin secretion.


2018 ◽  
Vol 315 (4) ◽  
pp. R669-R687 ◽  
Author(s):  
Imre Hunyor ◽  
Kristina M. Cook

Obstructive sleep apnea (OSA) is common and linked to a variety of poor health outcomes. A key modulator of this disease is nocturnal intermittent hypoxia. There is striking epidemiological evidence that patients with OSA have higher rates of cancer and cancer mortality. Small-animal models demonstrate an important role for systemic intermittent hypoxia in tumor growth and metastasis, yet the underlying mechanisms are poorly understood. Emerging data indicate that intermittent hypoxia activates the hypoxic response and inflammatory pathways in a manner distinct from chronic hypoxia. However, there is significant heterogeneity in published methods for modeling hypoxic conditions, which are often lacking in physiological relevance. This is particularly important for studying key transcriptional mediators of the hypoxic and inflammatory responses such as hypoxia-inducible factor (HIF) and NF-κB. The relationship between HIF, the molecular clock, and circadian rhythm may also contribute to cancer risk in OSA. Building accurate in vitro models of intermittent hypoxia reflective of OSA is challenging but necessary to better elucidate underlying molecular pathways.


Sign in / Sign up

Export Citation Format

Share Document