Local Scour around a Monopile Foundation for Offshore Wind Turbines and Scour Effects on Structural Responses

Author(s):  
Wen-Gang Qi ◽  
Fu-Ping Gao

2020 ◽  
Vol 10 (21) ◽  
pp. 7579
Author(s):  
Zhaoyao Wang ◽  
Ruigeng Hu ◽  
Hao Leng ◽  
Hongjun Liu ◽  
Yifan Bai ◽  
...  

The displacement of monopile supporting offshore wind turbines needs to be strictly controlled, and the influence of local scour can not be ignored. Using p–y curves to simulate the pile–soil interaction and the finite difference method to calculate iteratively, a numerical frame for analysis of lateral loaded pile was discussed and then verified. On the basis of the field data from Dafeng Offshore Wind Farm in Jiangsu Province, the local scour characteristics of large diameter monopile were concluded, and a new method of considering scour effect applicable to large diameter monopile was put forward. The results show that, for scour of large diameter monopiles, there was no obvious scour pit, but local erosion and deposition. Under the test conditions, the displacement errors between the proposed and traditional method were 46.4%. By the proposed method, the p–y curves of monopile considering the scour effect were obtained through ABAQUS, and the deformation of large diameter monopile under scour was analyzed by the proposed frame. The results show that, with the increase of scour depth, the horizontal displacement of the pile head increases nonlinearly, the depth of rotation point moves downward, and both of the changes are related to the load level. Under the test conditions, the horizontal displacement of the pile head after scour could reach 1.4~3.6 times of that before scour. Finally, for different pile parameters, the pile head displacement was compared, and further, the susceptibility to scour was quantified by a proposed concept of scour sensitivity. The analysis indicates that increasing pile length is a more reasonable way than pile diameter and wall thickness to limit the scour effect on the displacement of large diameter pile.



2018 ◽  
Vol 32 (6) ◽  
pp. 737-745 ◽  
Author(s):  
Chao Ji ◽  
Jin-feng Zhang ◽  
Qing-he Zhang ◽  
Ming-xing Li ◽  
Tong-qing Chen


2014 ◽  
Vol 134 (8) ◽  
pp. 1096-1103 ◽  
Author(s):  
Sho Tsujimoto ◽  
Ségolène Dessort ◽  
Naoyuki Hara ◽  
Keiji Konishi






Author(s):  
Jose´ G. Rangel-Rami´rez ◽  
John D. So̸rensen

Deterioration processes such as fatigue and corrosion are typically affecting offshore structures. To “control” this deterioration, inspection and maintenance activities are developed. Probabilistic methodologies represent an important tool to identify the suitable strategy to inspect and control the deterioration in structures such as offshore wind turbines (OWT). Besides these methods, the integration of condition monitoring information (CMI) can optimize the mitigation activities as an updating tool. In this paper, a framework for risk-based inspection and maintenance planning (RBI) is applied for OWT incorporating CMI, addressing this analysis to fatigue prone details in welded steel joints at jacket or tripod steel support structures for offshore wind turbines. The increase of turbulence in wind farms is taken into account by using a code-based turbulence model. Further, additional modes t integrate CMI in the RBI approach for optimal planning of inspection and maintenance. As part of the results, the life cycle reliabilities and inspection times are calculated, showing that earlier inspections are needed at in-wind farm sites. This is expected due to the wake turbulence increasing the wind load. With the integration of CMI by means Bayesian inference, a slightly change of first inspection times are coming up, influenced by the reduction of the uncertainty and harsher or milder external agents.



2021 ◽  
Vol 11 (2) ◽  
pp. 574
Author(s):  
Rundong Yan ◽  
Sarah Dunnett

In order to improve the operation and maintenance (O&M) of offshore wind turbines, a new Petri net (PN)-based offshore wind turbine maintenance model is developed in this paper to simulate the O&M activities in an offshore wind farm. With the aid of the PN model developed, three new potential wind turbine maintenance strategies are studied. They are (1) carrying out periodic maintenance of the wind turbine components at different frequencies according to their specific reliability features; (2) conducting a full inspection of the entire wind turbine system following a major repair; and (3) equipping the wind turbine with a condition monitoring system (CMS) that has powerful fault detection capability. From the research results, it is found that periodic maintenance is essential, but in order to ensure that the turbine is operated economically, this maintenance needs to be carried out at an optimal frequency. Conducting a full inspection of the entire wind turbine system following a major repair enables efficient utilisation of the maintenance resources. If periodic maintenance is performed infrequently, this measure leads to less unexpected shutdowns, lower downtime, and lower maintenance costs. It has been shown that to install the wind turbine with a CMS is helpful to relieve the burden of periodic maintenance. Moreover, the higher the quality of the CMS, the more the downtime and maintenance costs can be reduced. However, the cost of the CMS needs to be considered, as a high cost may make the operation of the offshore wind turbine uneconomical.



Sign in / Sign up

Export Citation Format

Share Document