scholarly journals Bismuth Halide Perovskites for Photovoltaic Applications

Author(s):  
Khursheed Ahmad

In the last decade, energy crisis has become the most important topic for researchers. Energy requirements have increased drastically. To overcome the issue of energy crisis in near future, numerous efforts and sources have been developed. Therefore, solar energy has been considered the most promising energy source compared to other energy sources. There were different kinds of photovoltaic devices developed, but perovskite solar cells have been considered the most efficient and promising solar cell. The perovskite solar cells were invented in 2009 and crossed an excellent power conversion efficiency of 25%. However, it has a few major drawbacks, such as the presence of highly toxic lead (Pb) and poor stability. Hence, numerous efforts were made toward the replacement of Pb and highly stable perovskite solar cells in the last few years. Bismuth halide perovskite solar cell is one type of the replacement introduced to overcome these issues. In this chapter, I have reviewed the role of bismuth halide perovskite structures and their optoelectronic properties toward the development of perovskite solar cells.

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 667 ◽  
Author(s):  
Edson Meyer ◽  
Dorcas Mutukwa ◽  
Nyengerai Zingwe ◽  
Raymond Taziwa

Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.


RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20952-20967 ◽  
Author(s):  
Ehsan Raza ◽  
Fakhra Aziz ◽  
Zubair Ahmad

This article gives the comprehensive review on the environmental stability issues of PSCs.


2018 ◽  
Vol 67 ◽  
pp. 01021 ◽  
Author(s):  
Istighfari Dzikri ◽  
Michael Hariadi ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conversion efficiency, open circuit voltage and short circuit current compared to the device without HTL. The best performing device is PSC with CuSCN as HTL layer, namely Voc of 0.24, Isc of 1.79 mA, 0.27 FF and efficiency of 0.09%.


2017 ◽  
Vol 50 (41) ◽  
pp. 415501 ◽  
Author(s):  
Mohaddeseh Saffari ◽  
Mohammad Ali Mohebpour ◽  
H Rahimpour Soleimani ◽  
Meysam Bagheri Tagani

2021 ◽  
Author(s):  
Sahel Gozalzadeh ◽  
Farzad Nasirpouri ◽  
Sang Il Seok

Abstract Organic-inorganic hybrid perovskite is the most promising active layer for new generation of solar cells. Despite of highly efficient perovskite active layer conventionally fabricated by spin coating methods, the need for using toxic solvents like dimethylformamide (DMF) required for dissolving low soluble metal precursors as well as the difficulties for upscaling the process have restricted their practical development. To deal with these shortcomings, in this work, lead sulphide as the lead metal precursor was produced by aqueous chemical bath deposition. PbS films were subsequently chemically converted to PbI2 and finally to mixed-cation mixed halide perovskite films. The microstructural, optical and solar cell performance of mixed cation mixed halide perovskite films were exploited. Results show that controlling the morphology of PbI2 platelets achieved from PbS precursor films enabled efficient conversion to perovskite. Using this processing technique, smooth and pin hole-free perovskite films having columnar grains of about 800 nm and a bandgap of 1.55 eV were produced. The solar cell performance consisting of such perovskite layers gave rise to a notable power conversion efficiency of 11.35% under standard solar conditions. The proposed processing technique is a very promising environmentally friendly method for the production of large-scale high efficient perovskite solar cells.


2020 ◽  
Vol 8 (20) ◽  
pp. 10439-10449
Author(s):  
Klara Suchan ◽  
Justus Just ◽  
Pascal Becker ◽  
Eva L. Unger ◽  
Thomas Unold

Optical in situ monitoring tracks crystallization and optoelectronic properties of halide perovskites during growth in a glovebox environment.


2020 ◽  
Vol 8 (3) ◽  
pp. 1095-1104 ◽  
Author(s):  
Ming-Chun Tang ◽  
Yuanyuan Fan ◽  
Dounya Barrit ◽  
Xiaoming Chang ◽  
Hoang X. Dang ◽  
...  

Blade coating of mixed cation, mixed halide perovskite films is investigated using in situ X-ray scattering to investigate the role of formulations and processing routes and eliminate the need for anti-solvent dripping.


2017 ◽  
Vol 5 (16) ◽  
pp. 7423-7432 ◽  
Author(s):  
Lin Fan ◽  
Yi Ding ◽  
Jingshan Luo ◽  
Biao Shi ◽  
Xin Yao ◽  
...  

Chlorine incorporation and its configuration evolution during perovskite film formation were studied, as well as its effect on solar cell performance.


MRS Advances ◽  
2017 ◽  
Vol 2 (53) ◽  
pp. 3099-3104
Author(s):  
Zhihua Xu

ABSTRACTElectric field-modulated photoluminescence (PL) of perovskite solar cells is investigated to gain deeper insight about the role of the mobile ions in organometal halide perovskites. The PL intensity of perovskite solar cells show significant dependence on the polarity of the external electric field and the voltage scanning direction. This phenomenon is discussed in the framework of an ion migration mechanism, which has been widely accounted for the current density-voltage (J-V) hysteresis in perovskite solar cells. The result suggests that the mobile ions not only change the internal electric field of perovskite solar cells, but also have an effect on the recombination of photogenerated charge carriers.


Sign in / Sign up

Export Citation Format

Share Document