scholarly journals Studies on Histamine H2-Receptor Antagonists by Using Density Functional Theory

2020 ◽  
Author(s):  
Kodakkat Parambil Safna Hussan ◽  
Indulekha Jayarajan Jithin Raj ◽  
Sailaja Urpayil ◽  
Mohamed Shahin Thayyil

Density functional theory (DFT) is a quantum mechanical approach used to investigate the electronic structure (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. In this work, we have used DFT/B3LYP/6-31+G(d) level of theory to get insight into the molecular geometry and thermochemical properties of histamine H2-receptor antagonists. Histamine H2-receptor antagonists or H2 blockers are a group of pharmaceutical ingredients that reduce the amount of acid produced by the cells in the lining of the stomach. The potential H2 blockers include cimetidine, famotidine, nizatidine, and ranitidine. The detailed theoretical investigation on the listed H2 blockers in terms of their thermochemical parameters and global descriptive parameters revealed that, though famotidine is the best among them with highest Gibbs free energy, nizatidine showed higher biological activity with high softness, low hardness, and high electrophilicity index. The theoretical vibrational spectra of these four Histamine H2-receptor antagonists were analyzed and the infrared spectra of nizatidine was compared with the experimental IR spectra, and found to be good agreement with the experimental values. Further, frontier molecular orbitals especially the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were determined and the activation energy of the selected samples were calculated. In addition to this, the amorphisation technique were employed to enhance the solubility and bio availability of the best biologically active H2 blocker nizatidine using broadband dielectric spectroscopy.


2019 ◽  
Author(s):  
Brandon B. Bizzarro ◽  
Colin K. Egan ◽  
Francesco Paesani

<div> <div> <div> <p>Interaction energies of halide-water dimers, X<sup>-</sup>(H<sub>2</sub>O), and trimers, X<sup>-</sup>(H<sub>2</sub>O)<sub>2</sub>, with X = F, Cl, Br, and I, are investigated using various many-body models and exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. Analysis of the results obtained with the many-body models demonstrates the need to capture important short-range interactions in the regime of large inter-molecular orbital overlap, such as charge transfer and charge penetration. Failure to reproduce these effects can lead to large deviations relative to reference data calculated at the coupled cluster level of theory. Decompositions of interaction energies carried out with the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) method demonstrate that permanent and inductive electrostatic energies are accurately reproduced by all classes of XC functionals (from generalized gradient corrected (GGA) to hybrid and range-separated functionals), while significant variance is found for charge transfer energies predicted by different XC functionals. Since GGA and hybrid XC functionals predict the most and least attractive charge transfer energies, respectively, the large variance is likely due to the delocalization error. In this scenario, the hybrid XC functionals are then expected to provide the most accurate charge transfer energies. The sum of Pauli repulsion and dispersion energies are the most varied among the XC functionals, but it is found that a correspondence between the interaction energy and the ALMO EDA total frozen energy may be used to determine accurate estimates for these contributions. </p> </div> </div> </div>



1989 ◽  
Vol 9 (3) ◽  
pp. 253-272 ◽  
Author(s):  
James Black

This lecture outlines the early stages in the discovery of adrenaline β-receptor antagonists and of the histamine H2-receptor antagonists. It ends with a brief personal view about future research.



2021 ◽  
pp. 1-8
Author(s):  
Azadeh Jafari Rad ◽  
Maryam Abbasi ◽  
Bahareh Zohrevand

This work was performed regarding the importance of iron (Fe) chelation for biological systems. This goal was investigated by assistance of a model of thiocytosine (TC) for participating in Fe-chelation processes. First, formations of tautomeric conformations were investigated to explore existence of possible structures of TC. Next, Fe-chelation processes were examined for all four obtained tautomers of TC. The results indicated that thiol tautomers could be seen at higher stability than thio tautomers, in which one of such thiol tautomers yielded the strongest Fe-chelation process to build FeTC3 model. As a consequence, parallel to the results of original TC tautomers, Fe-chelated models were found to be achievable for meaningful chelation processes or sensing the existence of Fe in media. Examining molecular orbital features could help for sensing purposes. The results of this work were obtained by performing density functional theory (DFT) calculations proposing TC compounds suitable for Fe-chelation purposes.



1984 ◽  
Vol 27 (3) ◽  
pp. 380-386 ◽  
Author(s):  
Arturo Donetti ◽  
Enzo Cereda ◽  
Elio Bellora ◽  
Alberto Gallazzi ◽  
Cesare Bazzano ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document