scholarly journals Graphene and Its Nanocomposites Based Humidity Sensors: Recent Trends and Challenges

2021 ◽  
Author(s):  
Avik Sett ◽  
Kunal Biswas ◽  
Santanab Majumder ◽  
Arkaprava Datta ◽  
Tarun Kanti Bhattacharyya

Humidity sensors are of utmost importance in certain areas of life, in processing industries, in fabrication laboratories and in agriculture. Precise evaluation of humidity percentage in air is the need of various applications. Graphene and its composites have shown great potential in performing as humidity sensors owing to enormous surface area, very low electrical noise, high electrical conductivity, mechanical and thermal stability and high room temperature mobility. There is no such extensive review on graphene-based devices for humidity sensing applications. This review extensively discusses graphene-based devices intended towards sensing humidity, starting from the methods of synthesizing graphene, its electronic and mechanical properties favoring sensing behavior and different types of sensing mechanisms. The review also studies the performance and recent trends in humidity sensor based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and various composite materials based on graphene such as graphene/polymer, graphene/metal oxide or graphene/metal. Discussions on the limitations and challenges of the graphene-based humidity sensors along with its future trends are made.

ACS Omega ◽  
2017 ◽  
Vol 2 (10) ◽  
pp. 7293-7298 ◽  
Author(s):  
Jiali Zhang ◽  
Fangwei Zhang ◽  
Yaoyao Yang ◽  
Shouwu Guo ◽  
Jingyan Zhang

2016 ◽  
Vol 40 (11) ◽  
pp. 9111-9124 ◽  
Author(s):  
A. Muthurasu ◽  
P. Dhandapani ◽  
V. Ganesh

A simple and facile method for the simultaneous preparation of graphene quantum dots (GQDs) having different emission colours, viz., yellow, green and blue, and reduced graphene oxide (RGO) utilized respectively for bio-imaging and supercapacitor applications is demonstrated.


2020 ◽  
Vol 18 (12) ◽  
pp. 881-888
Author(s):  
Anil B. Patil ◽  
Umesh. J. Tupe ◽  
Vikas V. Deshmane ◽  
Arun V. Patil

This paper reports the development of simple and economical reduced graphene oxide (rGO) based screen-printed electrodes (SPE) for five basic taste sensing applications. Twenty different test solutions for the five tastes of salty, sour, sweet, umami, and bitter at 1 ppm, 10 ppm, 100 ppm, 1000 ppm concentration levels were tested with the fabricated SPEs. From experimental results, electrical signals generated between the electrode and test solution interface were measured using the potentiometric method. Satisfactory potentiometric responses of SPEs to different ppm concentrations for each sample were used to analyze the sample data. Histogram using the statistical tool was used to analyze the changes in the conductivity response. A multivariate Principal Component Analysis (PCA) statistical tool correlated using loading plots between variables and factors of all the five basic tastes. The plot showed the interrelation between variables and test samples. The obtained experimental results from these rGO based SPEs make them suitable for their use in taste sensing applications such as for any taste disorder disability, food-producing industry, pharmaceutical industries, etc.


ACS Omega ◽  
2020 ◽  
Vol 5 (34) ◽  
pp. 21345-21354
Author(s):  
Esraa Hamdy ◽  
Laila Saad ◽  
Fuad Abulfotuh ◽  
Moataz Soliman ◽  
Shaker Ebrahim

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 422 ◽  
Author(s):  
Chao Lv ◽  
Cun Hu ◽  
Junhong Luo ◽  
Shuai Liu ◽  
Yan Qiao ◽  
...  

Humidity sensors are a common, but important type of sensors in our daily life and industrial processing. Graphene and graphene-based materials have shown great potential for detecting humidity due to their ultrahigh specific surface areas, extremely high electron mobility at room temperature, and low electrical noise due to the quality of its crystal lattice and its very high electrical conductivity. However, there are still no specific reviews on the progresses of graphene-based humidity sensors. This review focuses on the recent advances in graphene-based humidity sensors, starting from an introduction on the preparation and properties of graphene materials and the sensing mechanisms of seven types of commonly studied graphene-based humidity sensors, and mainly summarizes the recent advances in the preparation and performance of humidity sensors based on pristine graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, and a wide variety of graphene based composite materials, including chemical modification, polymer, metal, metal oxide, and other 2D materials. The remaining challenges along with future trends in high-performance graphene-based humidity sensors are also discussed.


Carbon ◽  
2020 ◽  
Vol 162 ◽  
pp. 318-327 ◽  
Author(s):  
Rumwald Leo G. Lecaros ◽  
Ma. Elizabeth Bismonte ◽  
Bonifacio T. Doma ◽  
Wei-Song Hung ◽  
Chien-Chieh Hu ◽  
...  

2019 ◽  
Vol 948 ◽  
pp. 267-273 ◽  
Author(s):  
Fiqhri Heda Murdaka ◽  
Ahmad Kusumaatmaja ◽  
Isnaeni ◽  
Iman Santoso

We report the synthesize of Graphene Quantum Dots (GQDs) using ablation method with reduced Graphene Oxide (rGO) solution as a starting material. We have varied the concentration of rGO as following: 0.5, 2, 5 mg/ml and then have ablated them using 800 nm Ti-Sapphire femtosecond laser to obtain GQDs. From the UV-Vis data, we observed that the more concentration of rGO is being ablated, the more secondary absorption peak at 255.1 nm appeared. This secondary absorption peak is a characteristic of n-π* bonding due to the presence of oxygen defect which occurs as a result of the interaction between the laser and the water in rGO solution. We conclude that the population of oxigen defect in GQDs is increasing, following the increase of rGO concentration and could alter the optical properties of GQD. On the other hand, using Tauc’s plot, we confirm that the increase of rGO concentration as the ablated material does not alter GQDs optical band gap. However, it will slightly reduce both, direct and indirect Oxygen defect related optical band gap.


2018 ◽  
Vol 1 (12) ◽  
pp. 7098-7105 ◽  
Author(s):  
Vardan Galstyan ◽  
Andrea Ponzoni ◽  
Iskandar Kholmanov ◽  
Marta M. Natile ◽  
Elisabetta Comini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document