scholarly journals Adsorption of Heavy Metals from Industrial Wastewater using Nanoparticles from Agro Wastes

2021 ◽  
Author(s):  
Lekan Taofeek Popoola ◽  
Alhaji Shehu Grema

Effluents from essential industries have been characterized with heavy metals which are non-biodegradable in nature and also detrimental to health when accumulated in body tissues over long exposure. Adsorption was proved as the best efficient process amongst others to remove these heavy metals from industrial wastewater due to its excellent features. Activated carbons from nanoparticles of agricultural wastes such as pods, shells, husks, peels, shafts and many prepared via calcination process at high temperature can be used as active adsorbent for the industrial wastewater treatment involving heavy metals removal. This chapter discusses heavy metals in industrial wastewater effluents and potential agro wastes from which nanoparticles of activated carbon for industrial wastewater purification could be generated. The transformation of agro wastes nanoparticles into activated carbons via calcination and their applications for heavy metals removal from industrial wastewater via adsorption were examined. Various characterization techniques to study the effects of calcination on structural, morphological and textural properties of activated carbon prepared from agro waste nanoparticles were also discussed. Various isotherm, kinetics, mechanistic and thermodynamics models to investigate the adsorptive nature of the process were presented. Error functions and algorithms for both the linear and non-linear isotherm models regression to affirm their fitness for prediction were presented. Lastly, proposed adsorption mechanisms of heavy metals removal from industrial wastewater using activated carbons from nanoparticles of agro wastes were presented.

Author(s):  
Rakesh Shrestha ◽  
Sagar Ban ◽  
Sijan Devkota ◽  
Sudip Sharma ◽  
Rajendra Joshi ◽  
...  

2014 ◽  
Vol 50 ◽  
pp. 113-120 ◽  
Author(s):  
Mona Karnib ◽  
Ahmad Kabbani ◽  
Hanafy Holail ◽  
Zakia Olama

2013 ◽  
Vol 91 (1) ◽  
pp. 322-332 ◽  
Author(s):  
Abu Zayed M. Badruddoza ◽  
Zayed Bin Zakir Shawon ◽  
Wei Jin Daniel Tay ◽  
Kus Hidajat ◽  
Mohammad Shahab Uddin

2018 ◽  
Vol 77 (6) ◽  
pp. 1591-1601
Author(s):  
S. M. R. Seyedein Ghannad ◽  
M. N. Lotfollahi

Abstract Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn+2, Cd2+ and Pb2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb2+, 95.9% for Cd2+ and 91.1% for Zn+2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn+2, Cd2+ and Pb2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.


Sign in / Sign up

Export Citation Format

Share Document