scholarly journals Return Stroke Process Simulation Using TCS Model

2021 ◽  
Author(s):  
Fridolin Heidler

The Traveling Current Source (TCS) model describes the electrical processes during the lightning return stroke phase. The TCS model assumes that the lightning current is injected at the top of the increasing return stroke channel represented by a transmission line. The electric and magnetic field is calculated based on the spatial and temporal distribution of the lightning current along the return stroke channel. It is shown that the main characteristics of the measured electric and magnetic fields can be reproduced with the TCS model. These are the Initial Peak of the electric and magnetic fields for near intermediate and far distances, the Ramp (up to the maximum) of the near electric field, the Hump of the near magnetic field after the initial peak, and the Zero Crossing of the far distant electric and magnetic fields. The fundamentals of the model are presented, and the model is extended to consider the current reflections occurring at the ground and the upper end of the return stroke channel. To this end, the ground reflection factor ρ and the top reflection factor R are introduced. Due to the increasing return stroke channel, the top reflection factor is a function of the return stroke velocity. The total current is composed of the source current according to the TCS model and the reflected currents. It is shown that the ground reflection causes significant variation in the waveform of the channel-base current and the electric and magnetic fields.


2018 ◽  
Vol 33 (25) ◽  
pp. 1850144
Author(s):  
Maryam Gholizadeh Arashti ◽  
Majid Dehghani

The Schwinger effect in the presence of instantons and background magnetic field was considered to study the dependence of critical electric field on instanton density and magnetic field using AdS/CFT conjecture. The gravity side is the near horizon limit of D3[Formula: see text]D(−[Formula: see text]1) background with electric and magnetic fields on the brane. Our approach is based on the potential analysis for particle–antiparticle pair at zero and finite temperatures, where the zero temperature case is a semi-confining theory. We find that presence of instantons suppresses the pair creation effect, similar to a background magnetic field. Then, the production rate will be obtained numerically using the expectation value of circular Wilson loop. The obtained production rate in a magnetic field is in agreement with previous results.







2021 ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Irene Moroz ◽  
Balamurali Ramakrishnan ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

Abstract A Morris-Lecar neuron model is considered with Electric and Magnetic field effects where the electric field is a time varying sinusoid and magnetic field is simulated using an exponential flux memristor. We have shown that the exposure to electric and magnetic fields have significant effects on the neurons and have exhibited complex oscillations. The neurons exhibit a frequency-locked state for the periodic electric field and different ratios of frequency locked states with respect to the electric field frequency is also presented. To show the impact of the electric and magnetic fields on network of neurons, we have constructed different types of network and have shown the network wave propagation phenomenon. Interestingly the nodes exposed to both electric and magnetic fields exhibit more stable spiral waves compared to the nodes exhibited only to the magnetic fields. Also, when the number of layers are increased the range of electric field frequency for which the layers exhibit spiral waves also increase. Finally the noise effects on the field affected neuron network are discussed and multilayer networks supress spiral waves for a very low noise variance compared against the single layer network.



2019 ◽  
Vol 204 ◽  
pp. 10008
Author(s):  
Alexander J. Silenko ◽  
Pengming Zhang ◽  
Liping Zou

Relativistic classical and quantum dynamics of twisted (vortex) Dirac particles in arbitrary electric and magnetic fields is constructed. The relativistic Hamiltonian and equations of motion in the Foldy-Wouthuysen representation are derived. Methods for the extraction of an electron vortex beam with a given orbital polarization and for the manipulation of such a beam are developed. The new effect of a radiative orbital polarization of a twisted electron beam in a magnetic field resulting in a nonzero average projection of the intrinsic orbital angular momentum on the field direction is predicted.



1979 ◽  
Vol 84 (C10) ◽  
pp. 6307 ◽  
Author(s):  
Y. T. Lin ◽  
M. A. Uman ◽  
J. A. Tiller ◽  
R. D. Brantley ◽  
W. H. Beasley ◽  
...  


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Kwadwo A. Dompreh ◽  
Samuel Y. Mensah ◽  
Sulemana S. Abukari ◽  
Raymond Edziah ◽  
Natalia G. Mensah ◽  
...  

AbstractAcoustomagnetoelectric Effect (AME) in Graphene Nanoribbon (GNR) in the presence of an external electric and magnetic fields was studied using the Boltzmann kinetic equation. On open circuit, the Surface Acoustomagnetoelectric field (ESAME) in GNR was obtained in the region ql >> 1, for energy dispersion "(p) near the Fermi level. The dependence of ESAME on the dimensional factor (ɳ), the sub-band index (pi), and the width (N) of GNR were analyzed numerically. For ESAME versus ɳ, a non-linear graph was obtained. From the graph, at ɳ < 0.62, the obtained graph qualitatively agreed with that experimentally observed in graphite. However at ɳ > 0.62, the ⃗ESAME falls rapidly to a minimum value. We observed that in GNR, the maximum ⃗ESAME was obtained at magnetic field H = 3.2Am−1. The graphs obtainedwere modulated by varying the subband index pi with an inversion observed when pi = 6. The dependence of ESAME on the width N for various pi was also studied where, ⃗ESAME decreases for increase in pi. To enhanced the understanding of ESAME on the N and ɳ, a 3D graph was plotted. This study is relevant for investigating the properties of GNR.



1975 ◽  
Vol 53 (17) ◽  
pp. 1659-1663
Author(s):  
K. D. Krori ◽  
Jayantimala Chakrabarty

We have presented here some results on test particles in the field of a cylindrical distribution of matter in a longitudinal electric or magnetic field.



2018 ◽  
Vol 96 (9) ◽  
pp. 961-968
Author(s):  
De-hua Wang

We examine the dynamics of electrons photodetached from the H– ion in time-dependent electric and magnetic fields for the first time. The photodetachment microscopy patterns caused by a time-dependent gradient electric field and magnetic field have been analyzed in great detail based on the semiclassical theory. The interplay of the gradient electric field and magnetic field forces causes an intricate shape of the electron wave and multiple electron trajectories generated by a fixed energy point source can arrive at a given point on the microchannel-plate detector. The interference effects between these electron trajectories cause the oscillatory structures of the electron probability density and electron current distribution, and a set of concentric interference fringes are found at the detector. Our calculation results suggest that the photodetachment microscopy interference pattern on the detector can be adjusted by the electron energy, magnetic field strength, and position of the detector plane. Under certain conditions, the interference pattern in the electron current distribution might be seen on the detector plane localized at a macroscopic distance from the photodetachment source, which can be observed in an actual photodetachment microscopy experiment. Therefore, we make predictions that our work should serve as a guide for future photodetachment microscopy experiments in time-dependent electric and magnetic fields.



Sign in / Sign up

Export Citation Format

Share Document