scholarly journals Soybean as a Model Crop to Study Plant Oil Genes: Mutations in FAD2 Gene Family

2021 ◽  
Author(s):  
Sy M. Traore ◽  
Guohao He

Plants have numerous fatty acid desaturase (FAD) enzymes regulating the unsaturation of fatty acids, which are encoded by a FAD gene family. The FAD2 genes belong to such family and play a vital role in converting monounsaturated oleic acid to polyunsaturated linoleic acid. Oleic acid has the health benefits for humans, such as reduction in cholesterol level, antioxidation property, and industrial benefits like longer shelf life. The development of genotypes with high oleic acid content in seeds has become one of the primary goals in breeding oilseed plants. The identification and characterization of the FAD2 genes in plants have been an important step to better manipulate gene expression to improve the seed oil quality. The induction of mutations in FAD2 genes to reduce FAD2 enzyme activity has been an integral approach to generate genotypes with high oleic acid. This chapter will describe the FAD2 gene family in the model organism soybean and the correction of mutations in FAD2 genes with the increase of oleic acid content. Leveraging advanced research of FAD2 gene family in soybean promotes the study of FAD2 genes in other legume species, including peanut. The future perspectives and challenges associated with mutations in FAD2 genes will be discussed.

2011 ◽  
Author(s):  
◽  
Anh Tung Pham

The purpose of this project is to modify the fatty acid composition in soybean seeds to improve soybean oil quality and functionality. By sequencing the FAD2-1A and FAD2-1B genes in 24 plant introductions, we identified two novel mutant alleles: one for each gene that is responsible for the elevated oleic acid content in four plant introductions. The combination of the newly identified mutant FAD2-1B allele with existing or the novel mutant FAD2-1A alleles created soybean lines with more than 80% oleic acid content. Combination of two mutant FAD2-1A and FAD2-1B with mutant FAD3A or mutant FAD3C or both resulted in high oleic acid content of 80 - 85% and linolenic acid content in the range from 1.5 - 4%. Perfect molecular markers associated with these mutant alleles were designed to help select the soybean lines with genotypes of interest in early generations in breeding. The high oleic acid and high oleic acid low linolenic soybeans produced have an improved stability across growing environments compared to existing sources.


Crop Science ◽  
2001 ◽  
Vol 41 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Yolanda López ◽  
Olin D. Smith ◽  
Scott A. Senseman ◽  
William L. Rooney

2021 ◽  
Author(s):  
Ronaldo Silva Gomes ◽  
Ronaldo Machado Júnior ◽  
Cleverson Freitas de Almeida ◽  
Rebeca Lourenço de Oliveira ◽  
Rafael Ravaneli Chagas ◽  
...  

Cucurbita moschata D. seed oil contains approximately 75% unsaturated fatty acids, with high levels of monounsaturated fatty acids and antioxidant compounds such as vitamin E and carotenoid, constituting a promising food in nutritional terms. Associated to this, the Brazilian germplasm of C. moschata exhibits remarkable variability, representing an important source for the genetic breeding of this vegetable and other cucurbits. In this context, the present study evaluated the productivity and profile of the seed oil of 91 C. moschata accessions from different regions of Brazil and maintained in the Vegetable Germplasm Bank of the Federal University of Viçosa (BGH-UFV). A field experiment was conducted between January and July 2016. The tested C. moschata accessions showed high genetic variability in terms of characteristics related to seed oil productivity (SOP), such as the mass of seeds per fruit and productivity of seeds, providing predicted selection gains of 29.39 g and 0.26 t ha -1 , respectively. Based on the phenotypic and genotypic correlations, greater SOP can be achieved while maintaining high oleic acid content and low linoleic acid content, providing oil of better nutritional and chemical quality. In variability analysis, the accessions were clustered into five groups, which presented different averages for SOP and fatty acid content of seed oil; approach that will guide the use of appropriate germplasm in programs aimed at genetic breeding for SOP and seed oil profile. Per se analysis identified BGH-4610, BGH-5485A, BGH-6590, BGH-5556A, BGH-5472A, and BGH-5544A as the most promising accessions in terms of SOP, with average (m+g) of approximately 0.20 t ha -1 . The most promising accessions for higher oleic acid content of seed oil were BGH-5456A, BGH-3333A, BGH-5361A, BGH-5472A, BGH-5544A, BGH-5453A, and BGH-1749, with average (m+g) of approximately 30%, and almost all of these accessions were also the most promising in terms of lower linoleic acid content of seed oil, with average (m+g) of approximately 45%. Overall, part of the C. moschata accessions evaluated in the present study can serve as a promising resource in genetic breeding programs for SOP and fatty acid profile, aiming at the production of oil with better nutritional and physicochemical quality.


2017 ◽  
Vol 43 (6) ◽  
pp. 855 ◽  
Author(s):  
Ming-Yang YU ◽  
Ming-Ming SUN ◽  
Yue GUO ◽  
Ping-Ping JIANG ◽  
Yong LEI ◽  
...  

OCL ◽  
2016 ◽  
Vol 23 (5) ◽  
pp. D509 ◽  
Author(s):  
J. D. Leao ◽  
V. Bouillon ◽  
L. Muntada ◽  
C. Johnson ◽  
Paul Wilson ◽  
...  

Euphytica ◽  
2009 ◽  
Vol 168 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Yamen A. S. Hamdan ◽  
Begoña Pérez-Vich ◽  
Leonardo Velasco ◽  
José M. Fernández-Martínez

Sign in / Sign up

Export Citation Format

Share Document