Urban Water Management

Author(s):  
Jack Schieffer

This chapter examines the challenges faced by municipal governments in managing their water resources, as rapidly growing urban populations and aging infrastructure contribute to sewer overflows, contaminated storm water runoff, flooding, and other problems. The federal Clean Water Act establishes the regulatory framework in which cities must operate. Having faced recent litigation for regulatory violations, three Kentucky cities—Lexington, Louisville, and Northern Kentucky (Cincinnati)—provide examples of urban areas grappling with these problems. Their subsequent experiences under consent decrees also showcase innovations in water management policies, including green infrastructure and watershed-based approaches, which will aid communities in rising to these challenges.

Water Policy ◽  
2014 ◽  
Vol 17 (1) ◽  
pp. 126-142 ◽  
Author(s):  
P. Mguni ◽  
L. Herslund ◽  
M. B. Jensen

The risk of flooding in urban areas could be better approached by complementing conventional sewer systems with sustainable urban drainage systems (SUDS) for storm-water management. This may be the case for developing world cities like Dar es Salaam with incomplete sewer services, as well as cities like Copenhagen with fully developed sewer systems. This paper explores some theories relevant to understanding how the implementation of SUDS may be one option for supporting a transition towards sustainable urban water management (SUWM). Using interviews, document analysis and observation, a comparison of the opportunities and barriers to the implementation of SUDS in Dar es Salaam and Copenhagen is presented. The results indicate that a bottom-up approach in Dar es Salaam is important, with the community level taking the lead, while in Copenhagen the top-down approach currently employed is promising. The ability of the institutional frameworks of both cities to support the implementation of SUDS is also discussed.


2012 ◽  
Vol 66 (11) ◽  
pp. 2393-2401 ◽  
Author(s):  
C. F. Fratini ◽  
M. Elle ◽  
M. B. Jensen ◽  
P. S. Mikkelsen

To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a ‘more sustainable and integrated urban water management cycle’. But Danish municipalities and utility companies are struggling to bring such solutions into practice. ‘Green infrastructure’, for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro–meso–micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.


2020 ◽  
Vol 3 (2) ◽  
pp. 143-154
Author(s):  
Rahmat Faizal ◽  
Noerman Adi Prasetya ◽  
Zikri Alstony ◽  
Aditya Rahman

Tarakan City experiences problems with standing water during the rainy season, especially in the west Tarakan sub-district which is the center of Tarakan. This puddle not only submerged settlements and offices but also shops and access roads that caused considerable economic losses. An evaluation was carried out by using the Storm Water Management Model (SWMM). SWMM is a rainfall-runoff simulation model used for simulating the quantity and quality of surface runoff from urban areas. Based on the evaluation using SWMM software, the drainage system in Tarakan, especially in Jalan Mulwarman has several inundated channels, namely channels 2, 3, 4, 5, 6, 7, 11, 12, 13, 14. This is influenced by the dimensions of the drainage channel that cannot accommodate existing water runoff and sediment thickness that covers the drainage channels so that the capacity is reduced, if it rains it will cause puddles at several points in Tarakan City. In order to deal with these puddles, it is necessary to change the dimensions of the channel and routinely dredge sediments that cover the drainage channels.


2014 ◽  
Vol 70 (11) ◽  
pp. 1774-1781 ◽  
Author(s):  
Yifan Ding ◽  
Deshan Tang ◽  
Yuhang Wei ◽  
Sun Yin

Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water–society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social–economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.


2021 ◽  
Author(s):  
Yannick Back ◽  
Fabian Funke ◽  
Peter Marcus Bach ◽  
Joao Paulo Leitao ◽  
Wolfgang Rauch ◽  
...  

<p>In the face of rapid urban and population growth and with climate change altering precipitation patterns, urban water management is becoming increasingly demanding. Numerous software, tools and approaches to study urban water flow behaviour and model hydrological processes exist. However, the understanding of water movement in urban areas, especially during extreme events, and the physical principles behind them, as well as the interaction between the natural and the urban hydrological cycle is still incomplete. For decades, models suited for urban hydrological analysis greatly impacted the improvement of flood protection, public health and environmental protection, changing the way we look at urban water and stormwater management. In order to calculate accurate quantities of runoff in any rainfall/runoff model, information about urban sub-catchment characteristics plays an important role. Size, shape, topography, as well as land use influencing infiltration rates and evapotranspiration, are of great importance to calculate accurate runoff quantities on the urban scale. New implementations to reduce runoff towards the sewer system, such as decentralised stormwater techniques, increase the urgent need for accurate and high-resolution local/neighbourhood-scale information. Spatial and temporal developments require water management models to be connected with GIS (Geographical Information Systems). Initially not being developed to interact with each other, multiple approaches exist to combine GIS with water management models. Nevertheless, defining urban sub-catchments for rainfall-runoff modelling is often still performed manually using specific maps or using simple surface partitioning algorithms such as the Thiessen polygons. A significant disadvantage in generating urban sub-catchments manually is the fact that natural surface inclination is usually not considered, influencing the size and shape of the delineated sub-catchments. So far, only a few studies have devoted attention to improving the way urban sub-catchments are delineated and the information about their surface characteristics is generated. This study evaluates a GIS-based approach to automatically delineate urban sub-catchments accounting for the location of nodes (actual manholes or drain inlets) as sub-catchment outlets. In order to compare the influence of the sub-catchment delineation methods (1 to 3), we use (1) a digital surface model (DSM) and (2) a digital elevation model (DEM) to automatically delineate the urban sub-catchments and compare these two methods with each other as well as with (3) already manually derived sub-catchments of a specific case study. Furthermore, we compare hydraulic simulation results from the software SWMM with measured flow data to infer the most accurate sub-catchment delineation method.</p>


Author(s):  
Jaime Nivala ◽  
Andreas Zehnsdorf ◽  
Manfred van Afferden ◽  
Roland A. Müller

2018 ◽  
Vol 80 (8) ◽  
pp. 572-576
Author(s):  
Patrick Phoebus ◽  
Michael L. Rutledge ◽  
Kim C. Sadler

Trees are the largest organisms students usually encounter in their daily lives. However, most are unaware of the critical roles trees play in their local environments. As critical components of green infrastructure, trees improve air quality, mitigate storm-water runoff, and provide food and habitat for other organisms. Using the cross-platform and open-source software Bioimages Collection Manager (BCM), we created an online interactive arboretum guide for a university campus arboretum. Faculty, students, and visitors can scan tree tags with their mobile devices and access biological metadata, participate in self-guided tree tours, and learn about the ecology and ethnobotany of individual tree species. Importantly, this approach may be replicated for other campuses, school yards, and additional green spaces.


Sign in / Sign up

Export Citation Format

Share Document