scholarly journals Comparison of Result Times Between Urine and Whole Blood Point-of-care Pregnancy Testing

2016 ◽  
Vol 17 (4) ◽  
pp. 449-453 ◽  
Author(s):  
Michael Gottlieb ◽  
Kristopher Wnek ◽  
Jordan Moskoff ◽  
Errick Christian ◽  
John Bailitz
2015 ◽  
Vol 66 (4) ◽  
pp. S23
Author(s):  
M. Gottlieb ◽  
K. Wnek ◽  
E. Christian ◽  
J. Moskoff ◽  
J. Bailitz

2021 ◽  
pp. 104063872110018
Author(s):  
Justin R. Perrault ◽  
Michael D. Arendt ◽  
Jeffrey A. Schwenter ◽  
Julia L. Byrd ◽  
Kathryn A. Tuxbury ◽  
...  

Blood glucose measurements provide important diagnostic information regarding stress, disease, and nutritional status. Glucose analytical methodologies include dry chemistry analysis (DCA) of plasma and point-of-care (POC) glucometer analysis of whole blood; however, these 2 methods differ in cost, required sample volume, and processing time. Because POC glucometers use built-in equations based on features of mammalian blood to convert whole blood measurements to plasma equivalent units, obtained glucose data must be compared and validated using gold-standard chemistry analytical methodology in reptiles. For in-water, trawl-captured, immature Kemp’s ridley sea turtles ( Lepidochelys kempii) from Georgia, USA, we observed significant, positive agreement between the 2 glucose determination methods; however, the glucometer overestimated glucose concentrations by 1.4 mmol/L on average in comparison to DCA and produced a wider range of results. The discordance of these results suggests that POC glucometer glucose data should be interpreted in the context of methodology- and brand-specific reference intervals along with concurrent packed cell volume data.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S57-S57
Author(s):  
Edgar Ong ◽  
Ruo Huang ◽  
Richard Kirkland ◽  
Michael Hale ◽  
Larry Mimms

Abstract Introduction A fast (<5 min), time-resolved fluorescence resonance energy transfer (FRET)-based immunoassay was developed for the quantitative detection of infliximab (IFX) and biosimilars for use in therapeutic drug monitoring using only 20 µL of fingerstick whole blood or serum at the point-of-care. The Procise IFX assay and ProciseDx analyzer are CE-marked. Studies were performed to characterize analytical performance of the Procise IFX assay on the ProciseDx analyzer. Methods Analytical testing was performed by spiking known amounts of IFX into negative serum and whole blood specimens. Analytical sensitivity was determined using limiting concentrations of IFX. Linearity was determined by testing IFX across the assay range. Hook effect was assessed at IFX concentrations beyond levels expected to be found within a patient. Testing of assay precision, cross-reactivity and potential interfering substances, and biosimilars was performed. The Procise IFX assay was also compared head-to-head with another CE-marked assay: LISA-TRACKER infliximab ELISA test (Theradiag, France). The accuracy of the Procise IFX assay is established through calibrators and controls traceable to the WHO 1st International Standard for Infliximab (NIBSC code: 16/170). Results The Procise IFX assay shows a Limit of Blank, Limit of Detection, and Lower Limit of Quantitation (LLoQ) of 0.1, 0.2, and 1.1 µg/mL in serum and 0.6, 1.1, and 1.7 µg/mL in whole blood, respectively. The linear assay range was determined to be 1.7 to 77.2 µg/mL in serum and whole blood. No hook effect was observed at an IFX concentration of 200 µg/mL as the value reported as “>ULoQ”. Assay precision testing across 20 days with multiple runs and reagent lots showed an intra-assay coefficient of variation (CV) of 2.7%, an inter-assay CV of <2%, and a total CV of 3.4%. The presence of potentially interfering/cross-reacting substances showed minimal impact on assay specificity with %bias within ±8% of control. Testing of biosimilars (infliximab-dyyb and infliximab-abda) showed good recovery. A good correlation to the Theradiag infliximab ELISA was obtained for both serum (slope=1.01; r=0.99) and whole blood (slope=1.01; r=0.98) samples (Figure 1). Conclusion Results indicate that the Procise IFX assay is sensitive, specific, and precise yielding results within 5 minutes from both whole blood and serum without the operator needing to specify sample type. Additionally, it shows very good correlation to a comparator assay that takes several hours and sample manipulation to yield results. This makes the Procise IFX assay ideal for obtaining fast and accurate IFX quantitation, thus allowing for immediate drug level dosing decisions to be made by the physician during patient treatment.


Author(s):  
Shoko Okahara ◽  
Tetsuya Handoh ◽  
Mitsuru Wakita ◽  
Takamasa Yamamoto ◽  
Shigeki Misawa ◽  
...  
Keyword(s):  

2003 ◽  
Vol 332 (1-2) ◽  
pp. 51-59 ◽  
Author(s):  
Jae Soon Ahn ◽  
Sunga Choi ◽  
Sang Ho Jang ◽  
Hyuk Jae Chang ◽  
Jae Hoon Kim ◽  
...  

2015 ◽  
Vol 22 (9) ◽  
pp. 1025-1032 ◽  
Author(s):  
Per Venge ◽  
Lena Douhan-Håkansson ◽  
Daniel Garwicz ◽  
Christer Peterson ◽  
Shengyuan Xu ◽  
...  

ABSTRACTThe distinction between causes of acute infections is a major clinical challenge. Current biomarkers, however, are not sufficiently accurate. Human neutrophil lipocalin (HNL) concentrations in serum or whole blood activated by formyl-methionine-leucine-phenylalanine (fMLP) were shown to distinguish acute infections of bacterial or viral cause with high accuracy. The aim was therefore to compare the clinical performance of HNL with currently used biomarkers. Seven hundred twenty-five subjects (144 healthy controls and 581 patients with signs and symptoms of acute infections) were included in the study. C-reactive protein (CRP), the expression of CD64 on neutrophils, procalcitonin (PCT), and blood neutrophil counts were measured by established techniques, and HNL concentrations were measured in whole-blood samples after activation with fMLP. All tested biomarkers were elevated in bacterial as opposed to viral infections (P< 0.001). CRP, PCT, and CD64 expression in neutrophils was elevated in viral infections compared to healthy controls (P< 0.001). In the distinction between healthy controls and patients with bacterial infections, the areas under the receiver operating characteristic (ROC) curves were >0.85 for all biomarkers, whereas for the distinction between bacterial and viral infections, only HNL concentration in fMLP-activated whole blood showed an area under the ROC curve (AUROC) of >0.90 and superior clinical performance. The clinical performance of HNL in fMLP-activated whole blood was superior to current biomarkers and similar to previous results of HNL in serum. The procedure can be adopted for point-of-care testing with response times of <15 min.


Sign in / Sign up

Export Citation Format

Share Document