scholarly journals Reliability Evaluation of High Speed Train Bogie System Based on Stochastic Network Flow Model

2020 ◽  
Vol 6 (5) ◽  
pp. 29-36
Author(s):  
Vartika Sharma ◽  
◽  
Rajesh Mishra ◽  
Author(s):  
Linlin Kou ◽  
Yong Qin ◽  
Limin Jia ◽  
Yong Fu

Bogie is one of the most major mechanical part of railway train. Its security and reliability are of paramount importance. Since research in this field is still on the early stage, which focus on either mechanical structure without condition or binary coherent systems. A multistate network flow model has been proposed in this paper with consideration of components degradation level and functional interaction between them. Firstly, the structure and function of the bogie for CRH3 were made a detailed introduction. Then transmission paths of three types force on bogie were study to determine the network strcture. Different from other papers, arcs represent the components and nodes are the transitive relation. Arc capacity tends to be confirmed easily with utilization of performance deterioration of elements on bogie involved in force tranferring. Flow rate of each arc depends on both component' health status and the task it undertakes. Furthermore, the minimal paths (MPs) method and the recursive sum of disjoint products (RSDP) with ordering heuristics are used for system reliability calculation; and the relative probability importance of each basic component and system reliability with and without forehead information are given at last. The results show that the network flow model works well on CRH3 bogie, and can support as guidance of bogie system design, daily system operation and predictive maintenance.


Author(s):  
Heejin Cho ◽  
Sandra D. Eksioglu ◽  
Rogelio Luck ◽  
Louay M. Chamra

The Combined Cooling, Heating, and Power (CCHP) systems have been widely recognized as a key alternative for thermal and electric energy generation because of the outstanding energy efficiency, reduced environmental emissions, and relative independence from centralized power grids. Nevertheless, the total energy cost of CCHP systems can be highly dependent on the operation of individual components and load balancing. The latter refers to the process of fulfilling the thermal and electrical demand by partitioning or “balancing” the energy requirement between the available sources of energy supply. The energy cost can be optimized through an energy dispatch algorithm which provides operational/control signals for the optimal operation of the equipment. The algorithm provides optimal solutions on decisions regarding generating power locally or buying power from the grid. This paper presents an initial study on developing an optimal energy dispatch algorithm that minimizes the cost of energy (i.e., cost of electricity from the grid and cost of natural gas into the engine and boiler) based on energy efficiency constrains for each component. A deterministic network flow model of a typical CCHP system is developed as part of the algorithm. The advantage of using a network flow model is that the power flows and efficiency constraints throughout the CCHP components can be readily visualized to facilitate the interpretation of the results. A linear programming formulation of the network flow model is presented. In the algorithm, the inputs include the cost of the electricity and fuel and the constraints include the cooling, heating, and electric load demands and the efficiencies of the CCHP components. This algorithm has been used in simulations of several case studies on the operation of an existing micro-CHP system. Several scenarios with different operational conditions are presented in the paper to demonstrate the economical advantages resulting from optimal operation.


Author(s):  
Jacek Błażewicz ◽  
Grzegorz Pawlak ◽  
Marie-Laure Espinouse ◽  
Gerd Finke

1976 ◽  
Vol 22 (11) ◽  
pp. 1221-1228 ◽  
Author(s):  
Gordon Bagby ◽  
Arne Thesen

Energies ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 613 ◽  
Author(s):  
Juliano Camargo ◽  
Fred Spiessens ◽  
Chris Hermans

Sign in / Sign up

Export Citation Format

Share Document