Role of Napsin A and TTF1 as a Diagnostic Marker for Lung Adenocarcinoma

2013 ◽  
Vol 137 (2) ◽  
pp. 155-155 ◽  
Author(s):  
Jabed Iqbal
2014 ◽  
Vol 50 ◽  
pp. 102
Author(s):  
A. Thomas ◽  
Y. Chen ◽  
S. Steinberg ◽  
J. Luo ◽  
G. Giaccone ◽  
...  

2021 ◽  
Author(s):  
Xue Wang ◽  
Yuetong Wang ◽  
Zhaoyuan Fang ◽  
Hua Wang ◽  
Jian Zhang ◽  
...  

Abstract Somatic mutations of the chromatin remodeling gene ARID2 are observed in about 7% of human lung adenocarcinoma (LUAD). However, the role of ARID2 in the pathogenesis of LUAD remains largely unknown. Here we find that ARID2 expression is decreased during the malignant progression of both human and mice LUAD. Using two KrasG12D-based genetically engineered murine models (GEMM), we demonstrate that ARID2 knockout significantly promotes lung cancer malignant progression and shortens the overall survival. Consistently, ARID2 knockdown significantly promotes cell proliferation in human and mice lung cancer cells. Through integrative analyses of Chip-Seq and RNA-Seq data, we find that Hspa1a is up-regulated by Arid2 loss. Knockdown of Hspa1a specifically inhibits malignant progression of Arid2-deficient but not Arid2-wt lung cancers in both cell lines as well as animal models. Treatment with Hspa1a inhibitor could significantly inhibit the malignant progression of lung cancer with Arid2 deficiency. Together, our findings establish ARID2 as an important tumor suppressor in LUAD with novel mechanistic insights, and further identify HSPA1A as a potential therapeutic target in ARID2-deficient LUAD.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Ran Fu ◽  
Wenwen Du ◽  
Zongli Ding ◽  
Yi Wang ◽  
Yue Li ◽  
...  

AbstractNeovascularization is a key factor that contributes to tumor metastasis, and vasculogenic mimicry (VM) is an important form of neovascularization found in highly invasive tumors, including lung cancer. Despite the increasing number of studies focusing on VM, the mechanisms underlying VM formation remain unclear. Herein, our study explored the role of the HIF-1α/NRP1 axis in mediating lung adenocarcinoma metastasis and VM formation. HIF-1α, NRP1 expression, and VM in lung adenocarcinoma (LUAD) patient samples were examined by immunohistochemical staining. Quantitative real-time (qRT-PCR), western blot, transwell assay, wound healing assay, and tube formation assay were performed to verify the role of HIF-1α/NRP1 axis in LUAD metastasis and VM formation. ChIP and luciferase reporter assay were used to confirm whether NRP1 is a direct target of HIF-1α. In LUAD tissues, we confirmed a positive relationship between HIF-1α and NRP1 expression. Importantly, high HIF-1α and NRP1 expression and the presence of VM were correlated with poor prognosis. We also found that HIF-1α could induce LUAD cell migration, invasion, and VM formation by regulating NRP1. Moreover, we demonstrated that HIF-1α can directly bind to the NRP1 promoter located between −2009 and −2017 of the promoter. Mechanistically, MMP2, VE-cadherin, and Vimentin expression were affected. HIF-1α plays an important role in inducing lung adenocarcinoma cell metastasis and VM formation via upregulation of NRP1. This study highlights the potential therapeutic value of targeting NRP1 for suppressing lung adenocarcinoma metastasis and progression.


Peptides ◽  
2021 ◽  
Vol 146 ◽  
pp. 170672
Author(s):  
Agata Grazia D’Amico ◽  
Grazia Maugeri ◽  
Daniela Maria Rasà ◽  
Rita Reitano ◽  
Salvatore Saccone ◽  
...  
Keyword(s):  

Author(s):  
Xiuna Sun ◽  
Mengqi Jia ◽  
Wei Sun ◽  
Lu Feng ◽  
Chundong Gu ◽  
...  

2020 ◽  
Author(s):  
Rachana Garg ◽  
Mariana Cooke ◽  
Shaofei Wang ◽  
Fernando Benavides ◽  
Martin C. Abba ◽  
...  

ABSTRACTNon-small cell lung cancer (NSCLC), the most frequent subtype of lung cancer, remains a highly lethal malignancy and one of the leading causes of cancer deaths worldwide. Mutant KRAS is the prevailing oncogenic driver of lung adenocarcinoma, the most common histological form of NSCLC. In this study, we examined the role of PKCε, an oncogenic kinase highly expressed in NSCLC and other cancers, in KRAS-driven tumorigenesis. Notably, database analysis revealed an association between PKCε expression and poor outcome in lung adenocarcinoma patients specifically having KRAS mutation. By generating a PKCε-deficient, conditionally activatable allele of oncogenic Kras (LSL-KrasG12D;PKCε−/− mice) we were able to demonstrate the requirement of PKCε for Kras-driven lung tumorigenesis in vivo, which is consistent with the impaired transformed growth observed in PKCε-deficient KRAS-dependent NSCLC cells. Moreover, PKCε-knockout mice were found to be less susceptible to lung tumorigenesis induced by benzo[a]pyrene, a carcinogen that induces mutations in Kras. Mechanistic analysis using RNA-Seq revealed little overlapping for PKCε and KRAS in the control of genes/biological pathways relevant in NSCLC, suggesting that a permissive role of PKCε in KRAS-driven lung tumorigenesis may involve non-redundant mechanisms. Our results thus highlight the relevance and potential of targeting PKCε for lung cancer therapeutics.


2015 ◽  
Vol 2 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Rama K. Singh ◽  
◽  
Drew C. Bethune ◽  
Zhaolin Xu ◽  
Susan E. Douglas ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Lianxiang Luo ◽  
Yushi Zheng ◽  
Zhiping Lin ◽  
Xiaodi Li ◽  
Xiaoling Li ◽  
...  

It has attracted growing attention that the role of serine hydroxy methyl transferase 2 (SHMT2) in various types of cancers. However, the prognostic role of SHMT2 in lung adenocarcinoma (LUAD) and its relationship with immune cell infiltration is not clear. In this study, the information of mRNA expression and clinic data in LUAD were, respectively, downloaded from the GEO and TCGA database. We conducted a biological analysis to select the signature gene SHMT2. Online databases including Oncomine, GEPIA, TISIDB, TIMER, and HPA were applied to analyze the characterization of SHMT2 expression, prognosis, and the correlation with immune infiltration in LUAD. The mRNA expression and protein expression of SHMT2 in LUAD tissues were higher than in normal tissue. A Kaplan-Meier analysis showed that patients with lower expression level of SHMT2 had a better overall survival rate. Multivariate analysis and the Cox proportional hazard regression model revealed that SHMT2 expression was an independent prognostic factor in patients with LUAD. Meanwhile, the gene SHMT2 was highly associated with tumor-infiltrating lymphocytes in LUAD. These results suggest that the SHMT2 gene is a promising candidate as a potential prognostic biomarker and highly associated with different types of immune cell infiltration in LUAD.


Sign in / Sign up

Export Citation Format

Share Document