scholarly journals A high performance, high precision, low cost rapid prototyping and manufacturing technology

2014 ◽  
Vol 4 (3) ◽  
pp. 179-184 ◽  
Author(s):  
Viacheslav R. Shulunov
2011 ◽  
Vol 105-107 ◽  
pp. 1951-1956
Author(s):  
Dong Qing Shen ◽  
Jian Yong Chen ◽  
Wan Cai Li ◽  
Hong Jiang ◽  
Zhen Yu Li

The purpose of a time discriminator is to decide when the input is something you are interested in. It does this by putting out a logic pulse when the input signal meets an adjustable threshold value. A low cost high performance constant fraction discriminator (CFD) for laser rangefinder using pulsed TOF (time of flight) is proposed with the accuracy been improved. The theory of CFD is deduced and discussed and a distance measuring system has been established and experimental evidence is presented to show the feasibility of solving the time walking error problem to amend the precision and improving the environmental applicability, the distance error of +/-0.5mm was observed in the lab condition. The advantages of this instrument are highlighted and the experimental results are presented.


2019 ◽  
Author(s):  
Alperen Guver ◽  
Nafetalai Fifita ◽  
Peker Milas ◽  
Michael Straker ◽  
Michael Guy ◽  
...  

AbstractA low-cost Scanning Electrochemical Microscope (SECM) was built with a 0.6 pA current measurement capability potentiostat and submicron resolution motorized stage, using open source software and hardware tools. The high performance potentiostat with a Python graphical user interface was built based on an open source project. Arduino boards, stepper motors, a manual XY micromanipulator stage, 3D printed couplers and gears were used in building the motorized stage. An open source motor control software was used for moving the motorized stage with high precision. An inverted microscope was utilized for viewing a standard microelectrode while scanning. The setup was tested in the formation of a map of electrochemical signals from an array of pores on a parafilm membrane. As the setup will be used in future biosensing experiments, DNA hybridization detection experiments were also performed with the setup.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 149
Author(s):  
Zhengyong Liu ◽  
Youdong Chen ◽  
Henan Song ◽  
Zhenming Xing ◽  
Hongmiao Tian ◽  
...  

The development of “large display, high performance and low cost” in the FPD industry demands glass substrates to be “larger and thinner”. Therefore, the requirements of handling robots are developing in the direction of large scale, high speed, and high precision. This paper presents a novel construction of a glass substrate handling robot, which has a 2.5 m/s travelling speed. It innovatively adopts bionic end-suction technology to grasp the glass substrate more firmly. The structure design is divided into the following three parts: a travel track, a robot body, and an end-effector. The manipulator can be smoothly and rapidly extended by adjusting the transmission ratio of the reducer to 1:2:1, using only one motor to drive two sections of the arm. This robot can transfer two pieces of glass substrate at one time, and improves the working efficiency. The kinematic and dynamic models of the robot are built based on the DH coordinate. Through the positioning accuracy experiment and vibration experiment of the end-effector, it is found that the robot has high precision during handling. The robots developed in this study can be used in large-scale glass substrate handling.


2011 ◽  
Vol 215 ◽  
pp. 295-299 ◽  
Author(s):  
Yong Ping Jin ◽  
M.M. Ding ◽  
J. Yu ◽  
C. Xiang

By integrating a number of different disciplines, rapid prototyping and manufacturing technology (RPM) is capable of forming parts with complicated structures and non-homogeneous materials. RPM techniques are mainly used as prototypes in such product invention process as stereo lithography, 3D printing, laminated object manufacturing and fused deposition modeling. So far, many new RPM techniques emerged out and have been already applied in such fields as rapid tooling/moulding, direct formed usable part, nano-/micro-RPM and biomanufacturing. The flexible digital manufacturing method will have a bright prospect.


2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


Sign in / Sign up

Export Citation Format

Share Document