vehicle navigation system
Recently Published Documents


TOTAL DOCUMENTS

149
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Leibing Yan

To improve the accuracy and reliability of the on-board navigation system positioning, the positioning control algorithm of vehicle navigation system based on wireless tracking technology is proposed. By using modern information fusion technology, the accurate positioning of vehicle integrated navigation is realized, and the design goal of omnidirectional, all weather, and self-contained positioning function is realized. Finally, the test shows that the accuracy and reliability of the positioning control algorithm of vehicle navigation system based on wireless tracking technology are improved than existing point system, speed measurement accuracy can reach 0.02 m/s, and positioning accuracy is about 18 meters. The vehicle operation efficiency and safety are greatly improved, and the traffic capacity is improved. And the traffic congestion is effectively alleviated, which provides reliable guarantee for the realization of traffic management automation and intelligent vehicle driving.


2021 ◽  
Vol 3 (2) ◽  
pp. 31-43
Author(s):  
Md. Fahad Hasan ◽  
Md. Bulbul Ahammed ◽  
Kalyan Mondol ◽  
Sadia Sultana ◽  
Anirban Sarkar

This paper gives an outline of ongoing work on electric vehicles in the area. The paper depicts the turn of events, and examination of various pieces of the principal segments of battery innovation, engine, forward, invert, start-stop, and slowing down are inspected. The paper examines the benefits of diesel motors and electric motors. Here are a few depictions of how the dark smoke from a diesel motor can harm our bodies. The paper, at last, appears as models of some electric vehicles finishing of administrative work.


2021 ◽  
Vol 33 (2) ◽  
pp. 242-253
Author(s):  
Hiroyuki Ukida ◽  

In this study, we propose an unmanned aerial vehicle (UAV) navigation system using LED panels and QR codes as markers in an indoor environment. An LED panel can display various patterns; hence, we use it as a command presentation device for UAVs, and a QR code can embed various pieces of information, which is used as a sign to estimate the location of the UAV on the way of the flight path. In this paper, we present a navigation method from departure to destination positions in which an obstacle lies between them. In addition, we investigate the effectiveness of our proposed method using an actual UAV.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6567
Author(s):  
Mohamed Moussa ◽  
Shady Zahran ◽  
Mostafa Mostafa ◽  
Adel Moussa ◽  
Naser El-Sheimy ◽  
...  

Nowadays, autonomous vehicles have achieved a lot of research interest regarding the navigation, the surrounding environmental perception, and control. Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) is one of the significant components of any vehicle navigation system. However, GNSS has limitations in some operating scenarios such as urban regions and indoor environments where the GNSS signal suffers from multipath or outage. On the other hand, INS standalone navigation solution degrades over time due to the INS errors. Therefore, a modern vehicle navigation system depends on integration between different sensors to aid INS for mitigating its drift during GNSS signal outage. However, there are some challenges for the aiding sensors related to their high price, high computational costs, and environmental and weather effects. This paper proposes an integrated aiding navigation system for vehicles in an indoor environment (e.g., underground parking). This proposed system is based on optical flow and multiple mass flow sensors integrations to aid the low-cost INS by providing the navigation extended Kalman filter (EKF) with forward velocity and change of heading updates to enhance the vehicle navigation. The optical flow is computed for frames taken using a consumer portable device (CPD) camera mounted in the upward-looking direction to avoid moving objects in front of the camera and to exploit the typical features of the underground parking or tunnels such as ducts and pipes. On the other hand, the multiple mass flow sensors measurements are modeled to provide forward velocity information. Moreover, a mass flow differential odometry is proposed where the vehicle change of heading is estimated from the multiple mass flow sensors measurements. This integrated aiding system can be used for unmanned aerial vehicles (UAV) and land vehicle navigations. However, the experimental results are implemented for land vehicles through the integration of CPD with mass flow sensors to aid the navigation system.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3254 ◽  
Author(s):  
Jungbeom Kim ◽  
Minhuck Park ◽  
Yonghwan Bae ◽  
O-Jong Kim ◽  
Donguk Kim ◽  
...  

In this study, we developed a low-cost, high-precision vehicle navigation system for deep urban multipath environments using time-differenced carrier phase (TDCP) measurements. Although many studies are being conducted to navigate autonomous vehicles using the global positioning system (GPS), it is difficult to obtain accurate navigation solutions due to multipath errors in urban environments. Low-cost GPS receivers that determine the solution based on pseudorange measurements are vulnerable to multipath errors. We used carrier phase measurements that are more robust for multipath errors. Without correction information from reference stations, the limited information of a low-cost, single-frequency receiver makes it difficult to quickly and accurately determine integer ambiguity of carrier phase measurements. We used TDCP measurements to eliminate the need to determine integer ambiguity that is time-invariant and we combined TDCP-based GPS with an inertial navigation system to overcome deep urban multipath environments. Furthermore, we considered a cycle slip algorithm for its accuracy and a multi-constellation navigation system for its availability. The results of dynamic field tests in a deep urban area indicated that it could achieve horizontal accuracy of at the submeter level.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2551 ◽  
Author(s):  
Qifeng Lai ◽  
Hong Yuan ◽  
Dongyan Wei ◽  
Ningbo Wang ◽  
Zishen Li ◽  
...  

Using the Global Navigation Satellite System (GNSS), it is difficult to provide continuous and reliable position service for vehicle navigation in complex urban environments, due to the natural vulnerability of the GNSS signal. With the rapid development of the sensor technology and the reduction in their costs, the positioning performance of GNSS is expected to be significantly improved by fusing multi-sensors. In order to improve the continuity and reliability of the vehicle navigation system, we proposed a multi-sensor tight fusion (MTF) method by combining the inertial navigation system (INS), odometer, and barometric altimeter with the GNSS technique. Different fusion strategies were presented in the open-sky, insufficient satellite, and satellite outage environments to check the performance improvement of the proposed method. The simulation and real-device tests demonstrate that in the open-sky context, the error of sensors can be estimated correctly. This is useful for sensor noise compensation and position accuracy improvement, when GNSS is unavailable. In the insufficient satellite context (6 min), with the help of the barometric altimeter and a clock model, the accuracy of the method can be close to that in the open-sky context. In the satellite outage context, the error divergence of the MTF is obviously slower than the traditional GNSS/INS tightly coupled integration, as seen by odometer and barometric altimeter assisting.


Sign in / Sign up

Export Citation Format

Share Document