Effect of fire disturbances on soil respiration of Larix gmelinii Rupr. forest in the Da Xing’an Mountain during growing season

2012 ◽  
Vol 11 (21) ◽  
Author(s):  
Wenwen Tan
2018 ◽  
Vol 38 (8) ◽  
Author(s):  
胡同欣 HU Tongxin ◽  
胡海清 HU Haiqing ◽  
孙龙 SUN Long

2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.


2006 ◽  
Vol 55 (1) ◽  
pp. 59-68 ◽  
Author(s):  
Ferenc Ács ◽  
H. Breuer

The climatology of soil respiration in Hungary is presented. Soil respiration is estimated by a Thornthwaite-based biogeochemical model using soil hydrophysical data and climatological fields of precipitation and air temperature. Soil respiration fields are analyzed for different soil textures (sand, sandy loam, loam, clay loam and clay) and time periods (year, growing season and months).  Strong linear relationships were found between soil respiration and the actual evapotranspiration for annual and growing season time periods. In winter months soil respiration is well correlated with air temperature, while in summer months there is a quite variable relationship with water balance components. The strength of linear relationship between soil respiration and climatic variables is much better for coarser than for finer soil texture.


2018 ◽  
Vol 47 (1) ◽  
pp. 249-254
Author(s):  
Zhaoyong SHI ◽  
Ke LI ◽  
Yongming WANG ◽  
Bede S. MICKAN ◽  
Weikang YUAN ◽  
...  

Soil respiration is one of the main fluxes in the global carbon cycle. The effect of temperature on soil respiration is well understood. The response of soil respiration to temperature warming is called apparent temperature sensitivity (Q10) of soil respiration, which is an important parameter in modeling soil CO2 effluxes under global climate warming. The difference of Q10 between daytime and nighttime was hardly reported although attentions are attracted by the differences of temperature change and its effects on vegetation productivity. In this study, we investigated the Q10 of soil respiration in daytime and nighttime by modeling empirical functions based on the in situ measurement of soil respiration and temperature in temperate and subtropical forests of eastern China. Our results showed that the Q10 of soil respiration is higher in nighttime with the mean value of 2.74 and 2.35 than daytime with the average of 2.49 and 2.18 in all measured months and growing season, respectively. Moreover, the explanatory rate of soil temperature to soil respiration in nighttime is also higher than in daytime in each site in both all measured and growing seasons. The Q10 and explanatory rate of soil temperature to soil respiration in nighttime is 1.08 and 1.15 times in daytime in growing season. These findings indicate that soil respiration has a bigger sensitivity to temperature in nighttime than daytime. The change of soil temperature explains more variation of soil respiration in nighttime than daytime.


2014 ◽  
Vol 28 (10) ◽  
pp. 1081-1095 ◽  
Author(s):  
Yonghui Wang ◽  
Huiying Liu ◽  
Haegeun Chung ◽  
Lingfei Yu ◽  
Zhaorong Mi ◽  
...  

2018 ◽  
Vol 32 (7) ◽  
pp. 1890-1901 ◽  
Author(s):  
Jianjun Li ◽  
Yin Huang ◽  
Fengwei Xu ◽  
Liji Wu ◽  
Dima Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document