Analysis of thermal efficiency of a passive solar water heater

Author(s):  
Eze J. I.
2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Asif Soopee ◽  
Abdel Anwar Hossen Khoodaruth ◽  
Anshu Prakash Murdan ◽  
Vishwamitra Oree

The effects of thermal separators within the evacuated tubes of a water-in-glass solar water heater (SWH) were numerically investigated using the commercial computational fluid dynamics (CFD) software ANSYS fluent. To validate the three-dimensional (3D) model, an experiment was performed for the passive operation of the SWH for a fortnight period, of which 3 h of recorded data was selected. The Boussinesq's approximation was employed, and the respective solar irradiance and ambient temperature profiles were incorporated. A maximum deviation of only 2.06% was observed between the experimental and numerical results. The model was then adapted for the case where thermal separators are inserted within the evacuated tubes of the SWH and both cases were run for two tilt angles, 10 deg and 40 deg. The temperature and velocity profiles within the evacuated tubes were analyzed alongside the temperature contours, thermal stratification, and overall thermal efficiency of the SWH. At a 40 deg tilt, without thermal separators, the flow streams within the evacuated tubes are restrained, and a chaotic thermal behavior was observed, thereby restricting thermal distribution to the water stored in the SWH tank. A lower tilt angle (10 deg) provided a more desirable thermal distribution. With thermal separators, however, the tilt angle preference was reversed. A faster and more uniform thermal distribution was achieved within the water tank, with a sizeable reduction in the thermal stratification at a 40 deg tilt. The overall thermal efficiency of the SWH was improved by 4.11% and 4.14% for tilt angles of 10 deg and 40 deg, respectively.


2018 ◽  
Vol 37 (3) ◽  
pp. 1147-1161 ◽  
Author(s):  
Esdras Nshimyumuremyi ◽  
Wang Junqi

Solar water heating is a technology of capturing the energy from the sun's radiation for the purpose of raising the temperature of water from water supply temperature to the desired higher temperature depending on the use. There are many views and discussions on the questions of thermal efficiency of solar water heaters and their associated cost, especially different customers/users want to replace their existing conventional water heating energy by solar water heating systems. In this present paper, a deep investigation has been accomplished to determine thermal efficiency and cost analysis of solar water heater made in Rwanda. During manufacturing of solar water heater, the collector was the main part to emphasize on. The high efficiency of the system was achieved by replacing galvanized iron sheet by aluminum sheet slotted and black painted as an absorber plate. The ambient temperature and average solar radiation of the three sites where solar water heaters are installed were investigated. The used materials, specifications and sizing were discussed in this paper.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 795-808 ◽  
Author(s):  
Phrut Sakulchangsatjatai ◽  
Chaiwat Wannagosit ◽  
Niti Kammuang-Lue ◽  
Pradit Terdtoon

In this study, the evacuated tube solar water heater system using thermosyphon has been investigated experimentally as well as theoretically. Solar radiation and ambient temperature data from Chiang Mai province were used for the modelling system by explicit finite difference method. The effects of thermosyphon diameters and number of evacuated tubes on the net saving of solar water heater system were analyzed. The mathematical results showed that the optimal number of evacuated tubes and thermosyphon diameter occurs at eight evacuated tubes, which are 15.88 mm of evaporator diameter and 22.22 mm of condenser diameter under personal hygiene conditions. The solar water heater system at optimal parameters was constructed and tested for the system prototype. The theoretical results were validated by the experimental results. It was found that the theoretical results can be used to predict temperature, heat transfer rate, and thermal efficiency to show good agreement with the experimental results as well as previous research. The experimental and theoretical results showed that the maximum temperature for hot water was 65.25?C and 71.66?C, respectively. Moreover, the thermal efficiency of the system based on the theoretical result was 60.11%, with relative error being about 3.04% of the experimental result.


2019 ◽  
Vol 36 ◽  
pp. 100564 ◽  
Author(s):  
Rashid Panahi ◽  
Mohammad Hassan Khanjanpour ◽  
Akbar A. Javadi ◽  
Mohammad Akrami ◽  
Mohammad Rahnama ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Xiaofei Zhen ◽  
Jinping Li ◽  
Yassir Idris Abdalla Osman ◽  
Rong Feng ◽  
Xuemin Zhang ◽  
...  

In order to utilize solar energy to meet the heating demands of a rural residential building during the winter in the northwestern region of China, a hybrid heating system combining solar energy and coal was built. Multiple experiments to monitor its performance were conducted during the winter in 2014 and 2015. In this paper, we analyze the efficiency of the energy utilization of the system and describe a prototype model to determine the thermal efficiency of the coal stove in use. Multiple linear regression was adopted to present the dual function of multiple factors on the daily heat-collecting capacity of the solar water heater; the heat-loss coefficient of the storage tank was detected as well. The prototype model shows that the average thermal efficiency of the stove is 38%, which means that the energy input for the building is divided between the coal and solar energy, 39.5% and 60.5% energy, respectively. Additionally, the allocation of the radiation of solar energy projecting into the collecting area of the solar water heater was obtained which showed 49% loss with optics and 23% with the dissipation of heat, with only 28% being utilized effectively.


2013 ◽  
Vol 49 (2) ◽  
pp. 89-92 ◽  
Author(s):  
S. Maheshwaran ◽  
K. Kalidasa Murugavel

Sign in / Sign up

Export Citation Format

Share Document