scholarly journals Partial and total mass attenuation coefficients, effective atomic number and effective electron number of different Maraging steel compositions

2017 ◽  
Vol 12 (2) ◽  
pp. 24-33 ◽  
Author(s):  
M. Reda A. ◽  
Halfa H.
2019 ◽  
Vol 97 (1) ◽  
pp. 86-92 ◽  
Author(s):  
F. Akman ◽  
I.H. Geçibesler ◽  
I. Demirkol ◽  
A. Çetin

The effective atomic numbers and electron densities of some synthesized triazoles were determined using the experimental values of total mass attenuation coefficients at 13.93, 17.77, 26.34, and 59.54 keV photon energies. The measurements were performed in a transmission geometry that consists of a Si(Li) detector, an 241Am point source and a target. The measured results were compared with two different theoretical results. The measured results are generally consistent with the theoretical results. It is observed that the measured parameters depend on the photon energy, weighted contributions of the individual atoms within the triazoles, atom number in the triazoles, and chemical composition of triazoles. Also, the effective electron density increases linearly with increasing effective atomic number.


2021 ◽  
Vol 19 (11) ◽  
pp. 15-21
Author(s):  
Ali Adil Turki Aldalawi ◽  
Mohammed Yahya Hadi ◽  
Rawaa A. Hameed

The effective atomic number (Z effective), total atomic cross-section (б Total) electron density (N effective) have been Measured depending on the mass attenuation coefficient (μ/ρ). By using Gamma-ray radiation (γ), emitted from sources (57𝐶𝑜, 133𝐵𝑎, 22𝑁𝑎, 137𝐶𝑠, 54𝑀𝑛, 𝑎𝑛𝑑 60𝐶𝑜) with energies from (0.122, 0.356, 0.511, 0.662, 0.84, 1.17, 1.275 𝑎𝑛𝑑 1.33𝑀𝑒𝑉) respectively. using the Sodium Iodide Scintillation Detectors NaI (Tl) at 662 keV and resolution about 8.2% have been measured the mass attenuation coefficients for the sample “Nonanoic acid its common name Pelargonic acid” it’s chemical formula C9H18O2. The data from the mass attenuation coefficient were then employed to study Zeffective, Neffective, and бtotal of the sample. In the presence of gamma-ray energy, it was discovered that the effective atomic number and effective electron densities first drop and they tend to remain nearly constant. The experimental values obtained by Zeffective and Neffective were in excellent agreement with the theoretical values. The theoretical data that is accessible is obtained from XCom, which is available online. The study's findings aid in understanding how (μ/ρ) values change when Zeff and Neff values vary in the case of H, C, and O based biological molecules such as fatty acids.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ertuğrul O. Bursalıoğlu ◽  
Orhan İçelli ◽  
Begüm Balkan ◽  
H. Birtan Kavanoz ◽  
Mustafa Okutan

The total mass attenuation coefficients (μt) (cm2/g) and atomic, molecular, and electronic effective cross sections have been calculated for nonessential amino acids that contain H, C, N, and O such as tyrosine, aspartate, glutamine, alanine, asparagine, aspartic acid, cysteine, and glycine in the wide energy region 0.015–15 MeV. The variations with energy of total mass attenuation coefficients and atomic, molecular, and electronic cross sections are shown for all photon interactions.


2014 ◽  
Vol 979 ◽  
pp. 405-408
Author(s):  
Keerati Kirdsiri ◽  
Narong Sangwaranatee

In this work, total mass attenuation coefficients and effective atomic numbers of a series of three host glasses with different chemical composition, 65RmOn: 10CaO : 25Na2O mol% (where RmOnare B2O3, SiO2and P2O5, respectively) have been studied as a function of photon energy. The total mass attenuation coefficient values were taken from WinXCom program, were used to evaluate the effective atomic numbers in the energy range from 1 keV to 100 GeV. The obtained results for all samples are compared and discussed.


2021 ◽  
Vol 2 (1) ◽  
pp. 034-037
Author(s):  
Tekerek Saniye

In this study the effects of gamma radiations with compounds are an important subject in the field of medicine, radiation shielding and radiation physics. With technological advances the using of radiation has increased in the medicine in the last century. The mass absorpsion coefficient (µ/ρ) is the fundamental a quantity characterizing gamma ray and is of major importance in radiation shielding. In this study, the mass absorption coefficient of painkillers named Ketoprofen, Flurbiprofen, Etodolac, Ibuprofen, Meloxicam, Diclofenac and Aspirin were calculated at energy range from 4.65 keV to 59.543 keV using the WinXCom data programme. In addition total atomic (σta), moleculer (σtm), electronic cross-section (σte), effective atomic number (Zeff), effective electron density (Neff) were calculated.


Sign in / Sign up

Export Citation Format

Share Document