Total and partial mass attenuation coefficients and effective atomic number studies in different solid state nuclear track detectors

1996 ◽  
Vol 47 (1) ◽  
pp. 109-116 ◽  
Author(s):  
G.S. Bhandal ◽  
K. Singh
2019 ◽  
Vol 97 (1) ◽  
pp. 86-92 ◽  
Author(s):  
F. Akman ◽  
I.H. Geçibesler ◽  
I. Demirkol ◽  
A. Çetin

The effective atomic numbers and electron densities of some synthesized triazoles were determined using the experimental values of total mass attenuation coefficients at 13.93, 17.77, 26.34, and 59.54 keV photon energies. The measurements were performed in a transmission geometry that consists of a Si(Li) detector, an 241Am point source and a target. The measured results were compared with two different theoretical results. The measured results are generally consistent with the theoretical results. It is observed that the measured parameters depend on the photon energy, weighted contributions of the individual atoms within the triazoles, atom number in the triazoles, and chemical composition of triazoles. Also, the effective electron density increases linearly with increasing effective atomic number.


2019 ◽  
Vol 107 (4) ◽  
pp. 339-348 ◽  
Author(s):  
Mohammed I. Sayyed ◽  
Ferdi Akman ◽  
Mustafa Recep Kaçal

Abstract Recently, technologists try to develop novel gamma radiation shielding materials instead of traditional materials such as lead and concrete with improved performance in gamma radiation shielding in medical applications and nuclear reactors. For this purpose, alloys such as stainless steel (SS) and carbon steel (CS) attracted much attention, these days. Preliminary results on such alloys have shown better attenuation of γ rays as compared to traditional shielding materials. This work aimed to conduct research on different alloy samples to evaluate their radiation attenuation efficiency and their suitability for radiation shielding when utilized in nuclear facilities. The mass attenuation coefficients for eight alloy samples were measured at different photon energies ranging from 80.997 to 1332.501 keV using transmission geometry. From the mass attenuation coefficients, different photon attenuation parameters such as half value layer, mean free path, effective atomic number, and radiation protection efficiency were evaluated. In addition, the equivalent atomic number and the exposure buildup factor were calculated using G-P fitting method for photon energy ranging from 0.015 MeV to 15 MeV at different penetration depth. The results showed that the Zeff values remain almost constant for all samples except W72/Cu28 in which the Zeff for this sample tends to decrease with the energy. The lowest value of half value layer is found for the alloy sample Ta97.5/W2.5 and the highest value is found for the alloy sample In50/Sn50. The Ta97.5/W2.5, Ta90/W10, Ta95/W5 samples demonstrated good radiation attenuation properties.


2021 ◽  
Vol 19 (11) ◽  
pp. 15-21
Author(s):  
Ali Adil Turki Aldalawi ◽  
Mohammed Yahya Hadi ◽  
Rawaa A. Hameed

The effective atomic number (Z effective), total atomic cross-section (б Total) electron density (N effective) have been Measured depending on the mass attenuation coefficient (μ/ρ). By using Gamma-ray radiation (γ), emitted from sources (57𝐶𝑜, 133𝐵𝑎, 22𝑁𝑎, 137𝐶𝑠, 54𝑀𝑛, 𝑎𝑛𝑑 60𝐶𝑜) with energies from (0.122, 0.356, 0.511, 0.662, 0.84, 1.17, 1.275 𝑎𝑛𝑑 1.33𝑀𝑒𝑉) respectively. using the Sodium Iodide Scintillation Detectors NaI (Tl) at 662 keV and resolution about 8.2% have been measured the mass attenuation coefficients for the sample “Nonanoic acid its common name Pelargonic acid” it’s chemical formula C9H18O2. The data from the mass attenuation coefficient were then employed to study Zeffective, Neffective, and бtotal of the sample. In the presence of gamma-ray energy, it was discovered that the effective atomic number and effective electron densities first drop and they tend to remain nearly constant. The experimental values obtained by Zeffective and Neffective were in excellent agreement with the theoretical values. The theoretical data that is accessible is obtained from XCom, which is available online. The study's findings aid in understanding how (μ/ρ) values change when Zeff and Neff values vary in the case of H, C, and O based biological molecules such as fatty acids.


Kerntechnik ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. 339-343 ◽  
Author(s):  
S. M. Vahabi ◽  
M. Bahreinipour ◽  
M. Shamsaie-Zafarghandi

Sign in / Sign up

Export Citation Format

Share Document