scholarly journals Evaluating the computing efficiencies (specificity and sensitivity) of graphics processing unit (GPU)-accelerated DNA sequence alignment tools against central processing unit (CPU) alignment tool

2018 ◽  
Vol 9 (2) ◽  
pp. 10-14 ◽  
Author(s):  
Pawar Shrikant ◽  
Stanam Aditya ◽  
Zhu Ying
2013 ◽  
Author(s):  
Roussian R. A. Gaioso ◽  
Walid A. R. Jradi ◽  
Lauro C. M. de Paula ◽  
Wanderley De S. Alencar ◽  
Wellington S. Martins ◽  
...  

Este artigo apresenta uma implementação paralela baseada em Graphics Processing Unit (GPU) para o problema da identificação dos caminhos mínimos entre todos os pares de vértices em um grafo. A implementação é baseada no algoritmo Floyd-Warshall e tira o máximo proveito da arquitetura multithreaded das GPUs atuais. Nossa solução reduz a comunicação entre a Central Processing Unit (CPU) e a GPU, melhora a utilização dos Streaming Multiprocessors (SMs) e faz um uso intensivo de acesso aglutinado em memória para otimizar o acesso de dados do grafo. A vantagem da implementação proposta é demonstrada por vários grafos gerados aleatoriamente utilizando a ferramenta GTgraph. Grafos contendo milhares de vértices foram gerados e utilizados nos experimentos. Os resultados mostraram um excelente desempenho em diversos grafos, alcançando ganhos de até 149x, quando comparado com uma implementação sequencial, e superando implementações tradicionais por um fator de quase quatro vezes. Nossos resultados confirmam que implementações baseadas em GPU podem ser viáveis mesmo para algoritmos de grafos cujo acessos à memória e distribuição de trabalho são irregulares e causam dependência de dados.


Author(s):  
Ahmad Hasif Azman ◽  
Syed Abdul Mutalib Al Junid ◽  
Abdul Hadi Abdul Razak ◽  
Mohd Faizul Md Idros ◽  
Abdul Karimi Halim ◽  
...  

Nowadays, the requirement for high performance and sensitive alignment tools have increased after the advantage of the Deoxyribonucleic Acid (DNA) and molecular biology has been figured out through Bioinformatics study. Therefore, this paper reports the performance evaluation of parallel Smith-Waterman Algorithm implementation on the new NVIDIA GeForce GTX Titan X Graphic Processing Unit (GPU) compared to the Central Processing Unit (CPU) running on Intel® CoreTM i5-4440S CPU 2.80GHz. Both of the design were developed using C-programming language and targeted to the respective platform. The code for GPU was developed and compiled using NVIDIA Compute Unified Device Architecture (CUDA). It clearly recorded that, the performance of GPU based computational is better compared to the CPU based. These results indicate that the GPU based DNA sequence alignment has a better speed in accelerating the computational process of DNA sequence alignment.


Author(s):  
Prashanta Kumar Das ◽  
Ganesh Chandra Deka

The Graphics Processing Unit (GPU) is a specialized and highly parallel microprocessor designed to offload 2D/3D image from the Central Processing Unit (CPU) to expedite image processing. The modern GPU is not only a powerful graphics engine, but also a parallel programmable processor with high precision and powerful features. It is forcasted that by 2020, 48 Core GPU will be available while by 2030 GPU with 3000 core is likely to be available.This chapter describes the chronology of evolution of GPU hardware architecture and the future ahead.


2017 ◽  
Vol 10 (13) ◽  
pp. 251
Author(s):  
Ankush Rai ◽  
Jagadeesh Kannan R

This research work presents a novel central processing unit-graphics processing unit (CPU-GPU) computing scheme for multiple object trackingduring a surveillance operation. This facilitates nonlinear computational jobs to avail completion of computation in minimal processing time for tracking function. The work is divided into two essential objectives. First is to dynamically divide the processing operations into parallel units, and second is to reduce the communication between CPU-GPU processing units.


Author(s):  
Wisoot Sanhan ◽  
Kambiz Vafai ◽  
Niti Kammuang-Lue ◽  
Pradit Terdtoon ◽  
Phrut Sakulchangsatjatai

Abstract An investigation of the effect of the thermal performance of the flattened heat pipe on its double heat sources acting as central processing unit and graphics processing unit in laptop computers is presented in this work. A finite element method is used for predicting the flattening effect of the heat pipe. The cylindrical heat pipe with a diameter of 6 mm and the total length of 200 mm is flattened into three final thicknesses of 2, 3, and 4 mm. The heat pipe is placed under a horizontal configuration and heated with heater 1 and heater 2, 40 W in combination. The numerical model shows good agreement compared with the experimental data with the standard deviation of 1.85%. The results also show that flattening the cylindrical heat pipe to 66.7 and 41.7% of its original diameter could reduce its normalized thermal resistance by 5.2%. The optimized final thickness or the best design final thickness for the heat pipe is found to be 2.5 mm.


Sign in / Sign up

Export Citation Format

Share Document