scholarly journals Estimation of the compressive strength of high performance concrete with artificial neural networks

2017 ◽  
Vol 8 (7) ◽  
pp. 67-73
Author(s):  
Acuna-Pinaud L. ◽  
Espinoza-Haro P. ◽  
Moromi-Nakata I. ◽  
Torre-Carrillo A. ◽  
Garcia-Fernandez F.
2008 ◽  
Vol 41-42 ◽  
pp. 277-282 ◽  
Author(s):  
Dariusz Alterman ◽  
Hiroshi Akita

Knowledge of the tension softening process of concrete is essential to understand fracture mechanism, further to analyze fracture behaviour, and further to evaluate properties of concrete. For the last eight years, many different tests on uniaxial tension with elimination of secondary flexure were performed in Tohoku Institute of Technology. The paper is dedicated to predict tension softening curve of concrete by using artificial neural networks (ANNs) based on experimental data of five different mixtures of concrete (including High Performance Concrete). It is an advantage to predict a proper tension softening curve without performing uniaxial tension tests. Several artificial neural networks with different architectures (with various hidden neurons and layers) were studied using software - Statistica Neural Network. In order to evaluate the prediction accuracy, tension softening curve and other fracture parameters were predicted for each mix from the other four mixes and compared with the omitted data of the relevant mix. High accuracy was obtained in the all predicted tension softening curves and the fracture parameters were also well predicted.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


Sign in / Sign up

Export Citation Format

Share Document