scholarly journals Space-Heating and Hot Water Supply by a Solar-Heat Pump System Applying a“Direct Siphon Well”as the Heat Source

1991 ◽  
Vol 33 (4) ◽  
pp. 239-246
Author(s):  
Kimio KANAYAMA ◽  
Hiromu BABA
Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 31
Author(s):  
Jihyun Hwang ◽  
Doosam Song ◽  
Taewon Lee

Geothermal source heat pump (GSHP) systems as renewable energy systems are being more frequently installed as part of the zero-energy building drive. However, in South Korea, where a large amount of heating load can be required, maintaining high system performance by using only a GSHP is difficult owing to the gradual degradation of its thermal performance. The performance of a solar-assisted GSHP system was therefore experimentally analyzed and compared with a GSHP-only system. The results showed that the heating coefficient of performance of the GSHP-only operation was 5.4, while that of the solar-assisted GSHP operation was 7.0. In the case of the GSHP-only system, the maximum temperature of the heat pump water supply on the heat source side was initially 13.1 °C, but this rapidly decreased to 11.4 °C during operation. For the solar-assisted GSHP system, the temperature of the water supply to the heat source side of the heat pump was controlled at 15–20.9 °C, and the power consumption for system operation was reduced by about 20% compared with that for the GSHP-only system. Much higher temperatures could be supplied when solar heat is used instead of ground heat, as solar heat contributes to the performance improvement of the heat pump system.


2012 ◽  
Vol 238 ◽  
pp. 478-481
Author(s):  
Zhen Qing Wang ◽  
Yan Chen ◽  
Hai Xia Wang

An air source heat pump system (ASHPS) was set up, which provided space heating and cooling, as well as hot water for an office building in Tianjin. Its operating performance in winter was evaluated based on test data. Considering the local abundant solar radiation and the way to provide energy in an office building, a simulation study was carried out on the combsystem of ASHP and flat plate air collector (FPAC). The effects of collector area and its outlet parameters on the heating performance of ASHP were studied, and the favorable operating and matching mode were recommended. The results indicate that ASHPS is a technically viable method in Tianjin in winter, but not economically, and the air-solar combsystem should be taken into account for its massive replacement for conventional energy.


Author(s):  
Jenny Chu ◽  
Cynthia A. Cruickshank ◽  
Wilkie Choi ◽  
Stephen J. Harrison

Heat pumps are commonly used for residential space-heating and cooling. The combination of solar thermal and heat pump systems as a single solar-assisted heat pump (SAHP) system can significantly reduce residential energy consumption in Canada. As a part of Team Ontario’s efforts to develop a high performance house for the 2013 DOE Solar Decathlon Competition, an integrated mechanical system (IMS) consisting of a SAHP was investigated. The system is designed to provide domestic hot water, space-heating, space-cooling and dehumidification. The system included a cold and a hot thermal storage tank and a heat pump to move energy from the low temperature reservoir, to the hot. The solar thermal collectors supplies heat to the cold storage and operate at a higher efficiency due to the heat pump reducing the temperature of the collector working fluid. The combination of the heat pump and solar thermal collectors allows more heat to be harvested at a lower temperature, and then boosted to a suitable temperature for domestic use via the heat pump. The IMS and the building’s energy loads were modeled using the TRNSYS simulation software. A parametric study was conducted to optimize the control, sizing and configuration of the system. This paper provides an overview of the model and summarizes the results of the study. The simulation results suggested that the investigated system can achieve a free energy ratio of about 0.583 for a high performance house designed for the Ottawa climate.


2014 ◽  
Vol 953-954 ◽  
pp. 650-654
Author(s):  
Chao Yi Tan ◽  
Hui Zhu ◽  
Hai Hua Hu ◽  
Meng Meng Wang ◽  
Han Qing Wang

Taking the geothermal heat pump system in the campus of Hunan University of Technology for example, three technical solutions of the heat source of the system were analyzed in terms of the condensing heat load, the annual unbalanced heat load and the energy efficiency ratio (EER) of the system. In addition, comparison was conducted among the solutions. The results indicate that the solution 3, which has a cold and hot water integrative unit and hot water unit connected in series, meanwhile has a cooling tower for auxiliary cooling, shows better performance among all the solutions. The analysis on the solution of heat source of geothermal heat pump system, which usually contains the analysis on the condensing heat load, annual unbalanced heat load and EER, is of great significance for the design and development of the geothermal heat pump system with lower coat and higher EER.


1997 ◽  
Vol 119 (2) ◽  
pp. 147-151 ◽  
Author(s):  
Sadasuke Ito ◽  
Nakatsu Miura ◽  
Jin Qi Wang ◽  
Miwako Nishikawa

It is known that the higher the evaporation temperature, the higher the coefficient of performance of a heat pump for hot water supply. Flat-plate solar collectors which were insulated on the back and bonded with flexible polycrystalline silicon-type photovoltaic modules on the upper surfaces were used in a heat pump system as the evaporator in order to increase the coefficient of performance and to generate electric power. The total area of the collectors was 3.24 m2 and the photovoltaic modules covered 76 percent of the area. The characteristics of the photovoltaic array and the thermal performance of the heat pump were studied experimentally. The results indicated that a coefficient of performance (COP) of the heat pump as high as six could be obtained at 40°C of the water temperature at the inlet of the condenser in the daytime in winter. The peak electric power generated was 120 W. It was found that the photovoltaic modules on the collectors did not influence the performance of the heat pump appreciably. When there was little solar radiation, the COP of the heat pump became two which was very low. This defect was improved by using an evaporator, which had a high convective heat transfer coefficient, arranged in parallel with the fiat-plate collectors.


Sign in / Sign up

Export Citation Format

Share Document