scholarly journals Analysis of tiazofurin-induced DNA damage in human whole blood cells using an in vitro comet assay

2020 ◽  
Vol 54 (3) ◽  
pp. 91-95
Author(s):  
Dijana Topalović ◽  
Lada Živković ◽  
Ninoslav Đelić ◽  
Vladan Bajić ◽  
Biljana Spremo-Potparević

Objective. Inosine 5'-monophosphate dehydrogenase (IMPDH) activity in cancer cells is increased. Tiazofurin selectively inhibits the activity of IMPDH, and it has been granted for the treatment of different cancers and new viral diseases. Its widespread use was limited because exposure to tiazofurin under certain circumstances was found to have a higher frequency of severe non-hematologic toxicity. Therefore, the objective of this study was to examine genotoxic action and inducement of DNA damage of tiazofurin using the comet assay. Methods. The ability of tiazofurin to induce DNA damage was evaluated using single-cell gel electrophoresis (SCGE) technique/comet assay. Human whole blood cells were exposed to three final concentrations of tiazofurin (1µM/mL, 2 µM/mL, and 5 µM/mL) for 30 min in vitro. Results. Our results indicate that tiazofurin produced a significant level of DNA damage on whole blood cells after 30 min of exposure vs. control. All tested concentrations were significantly comet-forming, in a concentration-dependent manner. Conclusion. Our investigation on the tiazofurin-treated cells and their relationship to the formation of DNA damage demonstrated that the genotoxic effect was induced after exposure to tiazofurin under described conditions.

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1347.2-1347
Author(s):  
S. Y. Ki ◽  
H. Shin ◽  
Y. Lee ◽  
H. R. Bak ◽  
H. Yu ◽  
...  

Background:Janus kinases (JAK1, JAK2, JAK3, and TYK2) play critical roles in mediating various cytokine signaling, and has been developed as a target for autoimmune diseases such as RA. Tofacitinib, oral Pan-JAK inhibitor, demonstrated efficacy in RA patients, but its widespread use is limited by safety issues. Baricitinib, JAK1/2 inhibitor, is also known to interfere with the hematopoiesis system, such as anemia and thrombocytopenia associated with suppression of JAK2 signals. Therefore, it is necessary to develop a new potent compound that selectively inhibits JAK1 over JAK2, 3Objectives:To identify the pharmacological characteristic based on efficacy of CJ-15314 as potent and selective JAK1 inhibitor for treatment of autoimmune disease.Methods:In vitro, cell-based, kinase panel, Kd value and human whole blood assay were performed to determine the inhibition potency and selectivity for JAK subfamily kinases. In vivo therapeutic potential was evaluated by RA model including rat Adjuvant-Induced Arthritis (AIA) and collagen-induced arthritic (CIA). To confirm the possibility of further expansion into the autoimmune disease, BioMAP® Diversity PLUS® Panel was performed by discoverX.Results:In vitro assay, CJ-15314 inhibited JAK kinase family in a concentration-dependent manner with IC50 values of 3.8 nM against JAK1, Selectivity for JAK1 over JAK2, 3 was approximately 18, 83 fold greater for CJ-15314. In 1mM ATP condition, CJ-15314 has been confirmed to have the highest JAK1 selectivity over competing drugs, under 1 mM ATP condition that reflects the physiological environment in the body. Similarly, Kd values has also confirmed the selectivity of JAK1, which is 10 fold higher than JAK2, 3. Accordingly, in human whole blood assays, CJ-15314 is 11 fold more potent against IL-6 induced pSTAT1 inhibition through JAK1 (IC50 value: 70 nM) than GM-CSF-induced pSTAT5 inhibition (JAK2) whereas baricitinib and filgotinib exhibited only 2 fold and 7 fold respectively.In vivo efficacy model, CJ-15314 inhibited disease severity scores in a dose dependent manner. In the rat AIA model, CJ-15314 at 30 mg/kg dose showed 95.3% decrease in arthritis activity score, 51.2% in figotinib at 30 mg/kg, 97.7% showed baricitinib at 10 mg/kg. CJ-15314 showed superior anti-arthritic efficacy than filgotinib. CJ-15314 also minimally affected anemia-related parameters but not bricitinib end of the 2-week treatment. In the rat CIA model, like 10 mg/kg of bricitinib, 30 mg/kg of CJ-15314 also has a similar effect, with a significant reduction in histopathological scores.In biomap diversity panel, CJ-15314 inhibited the expression of genes such as MCP-1, VCAM-1, IP-10, IL-8, IL-1, sTNF-α and HLA-DR confirming the possibility of expansion into other diseases beyond arthritis.Conclusion:CJ-15314 is a highly selective JAK1 inhibitor, demonstrates robust efficacy in RA animal model and is good candidate for further development for inflammatory diseases.* CJ-15314 is currently conducting a phase I trial in south Korea.References:[1]Clark JD et al. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014; 57(12):5023-38.[2]Burmester GR et al. Emerging cell and cytokine targets in rheumatoid arthritis. Nat Rev Rheumatol. 2014; 10(2):77-88[3]Jean-Baptiste Telliez et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol., 2016; 11 (12):3442-3451Disclosure of Interests:so young Ki Employee of: CJ healthcare, hyunwoo shin Employee of: CJ healthcare, yelim lee Employee of: CJ healthcare, Hyoung rok Bak Employee of: CJ healthcare, hana yu Employee of: CJ healthcare, Seung Chan Kim Employee of: CJ healthcare, juhyun lee Employee of: CJ healthcare, donghyun kim Employee of: CJ healthcare, Dong-hyun Ko Employee of: CJ Healthcare, dongkyu kim Employee of: CJ healthcare


2017 ◽  
Vol 3 (1) ◽  
pp. 1344115 ◽  
Author(s):  
Esvet Akbas ◽  
Fatih Caglar Celikezen ◽  
Hasan Turkez ◽  
Ozlem Ozdemir ◽  
Adem Ruzgar ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Lada Živković ◽  
Vladan Bajić ◽  
Dijana Topalović ◽  
Marija Bruić ◽  
Biljana Spremo-Potparević

The health benefits of natural products have long been recognized. Consumption of dietary compounds such as supplements provides an alternative source of natural products to those obtained from the diet. There is a growing concern regarding the possible side effects of using different food supplements simultaneously, since their possible interactions are less known. For the first time, we have tested genotoxic and antigenotoxic effects of Biochaga, in combination with dihydroquercetin. No genotoxic effect on whole blood cells was observed within individual treatment of Biochaga (250 μg/mL, 500 μg/mL and 1000 μg/mL) and dihydroquercetin (100 μg/mL, 250 μg/mL and 500 μg/mL), nor in combination. Afterwards, antigenotoxic potency of both supplements against hydrogen peroxide- (H2O2-) induced DNA damage to whole blood cells (WBC) was assessed, using the comet assay. Biochaga and dihydroquercetin displayed a strong potential to attenuate H2O2-induced damage on DNA in cells at all tested concentrations, with a statistical significance (p<0.05), whereas Biochaga at the dose of 500 μg/mL in combination with dihydroquercetin 500 μg/mL was most prominent. Biochaga in combination with dihydroquercetin is able to protect genomic material from oxidative damage induced by hydrogen peroxide in vitro.


2019 ◽  
Vol 61 ◽  
pp. 104616 ◽  
Author(s):  
Martina Galdíková ◽  
Beáta Holečková ◽  
Katarína Šiviková ◽  
Viera Schwarzbacherová ◽  
Simona Koleničová

2019 ◽  
Vol 51 (2) ◽  
pp. 120-125
Author(s):  
M. Zagheh ◽  
R. Golmohammadi ◽  
M. Alahgholi-Hajibehzad ◽  
R. Najafi-Vosough ◽  
Z. Zareighane ◽  
...  

1974 ◽  
Vol 125 (586) ◽  
pp. 268-274 ◽  
Author(s):  
Otto Hansen ◽  
Maria Dimitrakoudi

Peripheral whole blood uridine diphosphate glucose (UDPG) has been found to be significantly elevated in psychotic depression (Hansen, 1969; 1972a, b), and this was related to an equally significant lowering of whole blood adenosine triphosphate (ATP). Addition to healthy human blood of UDPG accelerated the hydrolysis of ATP in vitro (Hansen, 1972a), and UDPG concentration dependently enhanced the activity of a vegetable ATP di-phosphohydrolase (EC 3.6.1.5), which was also inhibited by adenosine 3’, 5′-cyclic monophosphate (cyclic AMP) in a concentration-dependent manner (Hansen, 1972b). Other workers have recently published a similar inhibition of a rat heart ATPase by cyclic AMP (Dietze and Hepp, 1972), and another research group have found that sodium-potassium exchange pump changes and changes in erythrocyte membrane ATPase activity correlate significantly with mood alterations in psychotic depressive patients (Dick, Dick, Le Poidevin and Naylor, 1972; Naylor, Dick, Dick, Le Poidevin and Whyte, 1973). This paper reports a study of the relationship between blood ATP levels and mood in patients suffering from manic-depressive predictable (Jenner, 1971) short term cycle psychotic states, and in depressive patients receiving electroconvulsive treatment.


2015 ◽  
Vol 68 (4) ◽  
pp. 821-827 ◽  
Author(s):  
Fatih Çağlar Çelikezen ◽  
Başak Toğar ◽  
Fatma Betül Özgeriş ◽  
Mehmet Sait İzgi ◽  
Hasan Türkez

Sign in / Sign up

Export Citation Format

Share Document