scholarly journals Usability of high pressure steam pipelines in thermal power plants for exploitation after the expiry of designed period

Tehnika ◽  
2015 ◽  
Vol 70 (6) ◽  
pp. 982-988
Author(s):  
Bratica Temelkovska ◽  
Radomir Cvetanoski
2021 ◽  
Vol 2088 (1) ◽  
pp. 012052
Author(s):  
O V Yegoshina ◽  
S K Zvonareva

Abstract The most important requirement for sampling is the sample representativeness, which is achieved by the design and location choice of sample nozzle, as well as the speed mode and the presence of sharp pressure drops in the saturated steam flow. The Ansys CFX software package simulates the sampling processes saturated steam in power units with low, medium and high pressure boilers which are used on operating thermal power plants. The saturated steam was sampled from low-pressure boiler by a single-strip probe with a Venturi nozzle, from the medium-pressure boiler was sampled by tapping a pipe at 90 to the main steam line, and the steam of the high – pressure boiler was sampled by a wellhead probe. In three sampling cases it is found that of saturated steam, the flow in the sample nozzle loses speed and decreases to values unacceptable for the selection of a representative sample-below tear rate of the moisture film from the surface. It is confirmed that in the industrial sampling conditions, the condition of speeds equality in the main steam line and in the sample nozzle is not met, which leads to a violation of the sample representativeness. The paper studies the change in the composition of the sampled saturated vapor sample after the film formation on the sample’s nozzle wall in relation to power units with ammonia dosing. It was found that the sample received by the chemical control analyzers is depleted due to the formation of a film and the ferrum and ammonia concentration in moisture droplets on the inner surface of the sampling line.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8519
Author(s):  
Nikolay Rogalev ◽  
Vladimir Kindra ◽  
Ivan Komarov ◽  
Sergey Osipov ◽  
Olga Zlyvko ◽  
...  

Thermal power plants (TPPs) with back-pressure steam turbines (BPSTs) were widely used for electricity and steam production in the Union of Soviet Socialist Republics (USSR) due to their high efficiency. The collapse of the USSR in 1991 led to a decrease in industrial production, as a result of which, steam production in Russia was reduced and BPSTs were left without load. To resume the operation of TPPs with BPSTs, it is necessary to modernize the existing power units. This paper presents the results of the thermodynamic analysis of different methods of modernization of TPPs with BPSTs: the superstructure of the steam low-pressure turbine (LPT) and the superstructure of the power unit operating on low-boiling-point fluid. The influence of ambient temperature on the developed cycles’ efficiency was evaluated. It was found that the usage of low-boiling-point fluid is thermodynamically efficient for an ambient temperature lower than 7 °C. Moreover, recommendations for the choice of reconstruction method were formulated based on technical assessments.


Author(s):  
Kazuhiko Komatsu ◽  
Hironori Miyazawa ◽  
Cheng Yiran ◽  
Masayuki Sato ◽  
Takashi Furusawa ◽  
...  

Abstract The periodic maintenance, repair, and overhaul (MRO) of turbine blades in thermal power plants are essential to maintain a stable power supply. During MRO, older and less-efficient power plants are put into operation, which results in wastage of additional fuels. Such a situation forces thermal power plants to work under off-design conditions. Moreover, such an operation accelerates blade deterioration, which may lead to sudden failure. Therefore, a method for avoiding unexpected failures needs to be developed. To detect the signs of machinery failures, the analysis of time-series data is required. However, data for various blade conditions must be collected from actual operating steam turbines. Further, obtaining abnormal or failure data is difficult. Thus, this paper proposes a classification approach to analyze big time-series data alternatively collected from numerical results. The time-series data from various normal and abnormal cases of actual intermediate-pressure steam-turbine operation were obtained through numerical simulation. Thereafter, useful features were extracted and classified using K-means clustering to judge whether the turbine is operating normally or abnormally. The experimental results indicate that the status of the blade can be appropriately classified. By checking data from real turbine blades using our classification results, the status of these blades can be estimated. Thus, this approach can help decide on the appropriate timing for MRO.


2021 ◽  
Author(s):  
Kazuhiko Komatsu ◽  
Hironori Miyazawa ◽  
Cheng Yiran ◽  
Masayuki Sato ◽  
Takashi Furusawa ◽  
...  

Abstract The periodic maintenance, repair, and overhaul (MRO) of turbine blades in thermal power plants are essential to maintain a stable power supply. During MRO, older and less-efficient power plants are put into operation, which results in wastage of additional fuels. Such a situation forces thermal power plants to work under off-design conditions. Moreover, such an operation accelerates blade deterioration, which may lead to sudden failure. Therefore, a method for avoiding unexpected failures needs to be developed. To detect the signs of machinery failures, the analysis of time-series data is required. However, data for various blade conditions must be collected from actual operating steam turbines. Further, obtaining abnormal or failure data is difficult. Thus, this paper proposes a classification approach to analyze big time-series data alternatively collected from numerical results. The time-series data from various normal and abnormal cases of actual intermediate-pressure steam-turbine operation were obtained through numerical simulation. Thereafter, useful features were extracted and classified using K-means clustering to judge whether the turbine is operating normally or abnormally. The experimental results indicate that the status of the blade can be appropriately classified. By checking data from real turbine blades using our classification results, the status of these blades can be estimated. Thus, this approach can help decide on the appropriate timing for MRO.


2018 ◽  
Vol 251 ◽  
pp. 03038
Author(s):  
Igor Zabora

The design, principle of operation and features of new combined electric machine – generator-transformer unit (GTU) are considered. The units are designed for generating units of mini thermal power plants with extreme parameters of moving media (steam-gas, gas-liquid, etc.) at high pressure and temperature. The possibility of reliable and efficient conversion of electric power by means of electric machines directly in sealed objects with extreme environmental conditions with help of new GTU is shown.


Sign in / Sign up

Export Citation Format

Share Document