scholarly journals Consumers' influence in sustainable decarbonisation of future power system

2021 ◽  
Vol 31 (31) ◽  
pp. 13-38
Author(s):  
Vladimir Šiljkut

Environmental protection and sustainable development cause a qualitative shift towards cleaner technologies in the field of electrical power. Countries with fossil fuel-based electricity generation have a questionable energy future regarding the independence and security of their end-users' supply. Therefore, it is necessary to explore all possible options for future development, taking into account the synergistic potential of other energy sources in electricity deficit compensation. That need will arise after the shutdown of fossil fuel power plants. It is necessary to mutually synchronize the development and application of different energy sources. For example, the large share of renewable energy sources with highly variable generation, without the presence of significant energy storage capacities or other sources that could compensate for these rapid power fluctuations, causes problems in energy balancing and disrupts power system flexibility and stability. Among the supporting pillars of a secure and decarbonised power system, special attention will be paid to the possible role and contribution of consumers; increasing their energy efficiency, using the heat capacity of buildings, demand response and direct demand side management.

2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


Author(s):  
Brent R. Bartlett ◽  
Bruce McGeoch ◽  
Edward Whitaker ◽  
David A. Torrey

Recent years have seen a surge of interest in renewable energy sources. Most renewable energy sources are intermittent in their production of power. One solution is to store the energy and draw from that stored energy in a controlled fashion. Recent advances have been made in solar thermal storage that would allow a solar thermal power system to operate year round and around the clock at nearly constant levels of electrical power production. This paper outlines how this can be accomplished.


2020 ◽  
Vol 12 (23) ◽  
pp. 9844
Author(s):  
Maximilian Borning ◽  
Larissa Doré ◽  
Michael Wolff ◽  
Julian Walter ◽  
Tristan Becker ◽  
...  

To mitigate global warming, the European Union aims at climate neutrality by 2050. In order to reach this, the transportation sector has to contribute especially, which accounts for about a quarter of the European greenhouse gas emissions. Herein, electricity-based fuels are a promising approach for reducing emissions. However, a large-scale deployment of electricity-based fuels has a significant impact on the power system due to high electricity demand and the requirement to use renewable energy sources in order to be sustainable. At the same time, this fuel production could offer additional flexibility for the power system. This article investigates the opportunities and challenges of electricity-based fuels and flexible electricity-based fuel production for the European power system. In a literature analysis, the pivotal role of electricity-based fuels for climate neutrality is confirmed. To analyze the impact of flexible fuel production, European power market simulations for the year 2035 are conducted. Results indicate that flexibilization leads to an increased integration of electricity based on renewable energy sources as well as reductions in both carbon dioxide emissions and total operational costs of the power system. However, very high flexibility levels also benefit high-emission power plants and may even lead to increased emissions.


2021 ◽  
Author(s):  
Sahishnukumar Shah

The small-scale vertical axis wind turbine is designed and modeled in this project, considering all aspects of wind turbine such as Blade design, stator design, rotor design and converter system design. Electric Power has become a prime necessity for any country for economic development. The conventional fuel sources for power generation are depleting fast. The favorable alternatives are renewable energy sources. Although more invention has to be carried out in the field of renewable energy sources, every little effort in this direction may provide a solution to reach most economical power generation point. Hence the same topic was selected for Masters Project. The goal of this project is to design a small scale Vertical Axis Wind Turbine, which is capable of producing electrical power even with low wind velocity. It can be placed on road dividers, sidetracks of train or remote places i.e. villages, military camps, where it is not economical to transmit power from power plants. Implementation of such project would reduce the dependence of an industry or remote houses, on electricity board.


2018 ◽  
Vol 12 (4) ◽  
pp. 675-695
Author(s):  
R. Saravanan ◽  
S. Subramanian ◽  
S. SooriyaPrabha ◽  
S. Ganesan

Purpose Generation scheduling (GS) is the most prominent and hard-hitting problem in the electrical power industry especially in an integrated power system. Countless techniques have been used so far to solve this GS problem for proper functioning of the units in the power system to dispatch the load economically to consumers at once. Therefore, this work aims to study for the best possible function of integrated power plants to obtain the most favourable solution to the GS problem. Design/methodology/approach An appropriate method works in a proper way and assures to give the best solution to the GS problem. The finest function of incorporated power plants should be mathematically devised as a problem and via that the aim of the GS problem to minimize the total fuel cost subject to different constraints will be achieved. In this research work, the latest meta-heuristic and swarm intelligence-based technique called grey wolf optimization (GWO) technique is used as an optimization tool that will work along with the formulated problem for correct scheduling of generating units and thus achieve the objective function. Findings The recommended GWO technique provides the best feasible solution which is optimal in its performance for different test cases in the GS problem of integrated power plant. It is further found that the obtained solutions using GWO method are better than the former reports of other traditional methods in terms of solution excellence. The GWO method is found to be unique in its performance and having superior computational efficiency. Practical implications Decision making is significant for effective operation of integrated power plants in an electrical power system. The recommended tactic implements a modern meta-heuristic procedure that is applied to diverse test systems. The method that is proposed is efficient in providing the best solutions of solving GS problems. The suggested method surpasses the early techniques by offering the most excellent feasible solutions. Thus, it is obvious that the proposed method may be the appropriate substitute to attain the optimal operation of GS problem. Social implications Renewable energy sources are discontinuous and infrequent in nature, and it is tough to predict them in general. Further, integrating renewable energy source-based plants with the conventional plant is extremely difficult to operate and maintain. Operation of integrated power system is full of challenges and complications. To handle those complications and challenges, the GWO algorithm is suggested for solving the GS problem and thus obtain the optimal solution in integrated power systems by considering the reserve requirement, load balance, equality and inequality constraints. Originality/value The proposed system should be further tested on diverse test systems to evaluate its performance in solving a GS problem and the results should be compared. Computation results reveal that the proposed GWO method is efficient in attaining best solution in GS problem. Further, its performance is effectively established by comparing the result obtained by GWO with other traditional methods.


Sign in / Sign up

Export Citation Format

Share Document