Generation scheduling with large-scale integration of renewable energy sources using grey wolf optimization

2018 ◽  
Vol 12 (4) ◽  
pp. 675-695
Author(s):  
R. Saravanan ◽  
S. Subramanian ◽  
S. SooriyaPrabha ◽  
S. Ganesan

Purpose Generation scheduling (GS) is the most prominent and hard-hitting problem in the electrical power industry especially in an integrated power system. Countless techniques have been used so far to solve this GS problem for proper functioning of the units in the power system to dispatch the load economically to consumers at once. Therefore, this work aims to study for the best possible function of integrated power plants to obtain the most favourable solution to the GS problem. Design/methodology/approach An appropriate method works in a proper way and assures to give the best solution to the GS problem. The finest function of incorporated power plants should be mathematically devised as a problem and via that the aim of the GS problem to minimize the total fuel cost subject to different constraints will be achieved. In this research work, the latest meta-heuristic and swarm intelligence-based technique called grey wolf optimization (GWO) technique is used as an optimization tool that will work along with the formulated problem for correct scheduling of generating units and thus achieve the objective function. Findings The recommended GWO technique provides the best feasible solution which is optimal in its performance for different test cases in the GS problem of integrated power plant. It is further found that the obtained solutions using GWO method are better than the former reports of other traditional methods in terms of solution excellence. The GWO method is found to be unique in its performance and having superior computational efficiency. Practical implications Decision making is significant for effective operation of integrated power plants in an electrical power system. The recommended tactic implements a modern meta-heuristic procedure that is applied to diverse test systems. The method that is proposed is efficient in providing the best solutions of solving GS problems. The suggested method surpasses the early techniques by offering the most excellent feasible solutions. Thus, it is obvious that the proposed method may be the appropriate substitute to attain the optimal operation of GS problem. Social implications Renewable energy sources are discontinuous and infrequent in nature, and it is tough to predict them in general. Further, integrating renewable energy source-based plants with the conventional plant is extremely difficult to operate and maintain. Operation of integrated power system is full of challenges and complications. To handle those complications and challenges, the GWO algorithm is suggested for solving the GS problem and thus obtain the optimal solution in integrated power systems by considering the reserve requirement, load balance, equality and inequality constraints. Originality/value The proposed system should be further tested on diverse test systems to evaluate its performance in solving a GS problem and the results should be compared. Computation results reveal that the proposed GWO method is efficient in attaining best solution in GS problem. Further, its performance is effectively established by comparing the result obtained by GWO with other traditional methods.

2020 ◽  
Author(s):  
Ana Fernández-Guillamón ◽  
Emilio Gómez-Lázaro ◽  
Eduard Muljadi ◽  
Ángel Molina-Garcia

Over recent decades, the penetration of renewable energy sources (RES), especially photovoltaic and wind power plants, has been promoted in most countries. However, as these both alternative sources have power electronics at the grid interface (inverters), they are electrically decoupled from the grid. Subsequently, stability and reliability of power systems are compromised. Inertia in power systems has been traditionally determined by considering all the rotating masses directly connected to the grid. Thus, as the penetration of renewable units increases, the inertia of the power system decreases due to the reduction of directly connected rotating machines. As a consequence, power systems require a new set of strategies to include these renewable sources. In fact, ‘hidden inertia,’ ‘synthetic inertia’ and ‘virtual inertia’ are terms currently used to represent an artificial inertia created by inverter control strategies of such renewable sources. This chapter reviews the inertia concept and proposes a method to estimate the rotational inertia in different parts of the world. In addition, an extensive discussion on wind and photovoltaic power plants and their contribution to inertia and power system stability is presented.


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


Author(s):  
Brent R. Bartlett ◽  
Bruce McGeoch ◽  
Edward Whitaker ◽  
David A. Torrey

Recent years have seen a surge of interest in renewable energy sources. Most renewable energy sources are intermittent in their production of power. One solution is to store the energy and draw from that stored energy in a controlled fashion. Recent advances have been made in solar thermal storage that would allow a solar thermal power system to operate year round and around the clock at nearly constant levels of electrical power production. This paper outlines how this can be accomplished.


2021 ◽  
Vol 24 (4) ◽  
pp. 109-115
Author(s):  
Vyacheslav Valerievich Guryev ◽  
Vladimir Vyacheslavovich Kuvshinov ◽  
Boris Anatolevich Yakimovich

The Crimean Peninsula is the flagship of the development of renewable energy, as it is not only an actively developing region, but also a resort center. The energy complex of the Crimean Peninsula in recent years has increased due to the construction of new power plants (Balaklava TPP and Tavricheskaya TPP) with a total capacity of 940 MW, as well as the construction of new 220 and 330 kV transmission lines, which ensured that the peninsula’s power supply deficit was covered. A review of the regional development and use of renewable energy sources is carried out. Based on the data obtained, an analysis is made of the problems and prospects for the development of renewable energy in the region. The development of renewable energy for the Crimean Peninsula plays an important role in order to achieve environmental safety and develop the economic potential of the region. The paper substantiates the priority use of renewable energy in the region, as well as the solution of emerging problems with an increase in the share of renewable energy in the total generation. The appearance of excess electricity in the power system and the possibility of balancing the generated power of renewable energy and thermal power plants, while reducing the cost of electricity. Investment attractiveness and active population growth in the region leads to an increase in generating capacity and an increase in the maneuverability of the energy system with a significant impact of RES. The efficiency of renewable energy in the energy system, the world experience in managing renewable energy generation, the actual impact of renewable energy on the energy system in conditions of electricity shortage, and forecast work schedules of the SES wind farm provided by the electric power industry entities in the assigned way are taken into account when forming the dispatch schedule and are accepted at the request of the subject. The available experience of existing SES in the power system of the Republic of Crimea and the city of Sevastopol requires additional research, including through field testing of generating equipment. Further full-scale tests should be carried out under the conditions of a real electric power mode of the power system, which requires the introduction of modern information technologies that ensure the exchange of technological information and the implementation of appropriate control actions. The work is underway to create a regulatory framework for the control of renewable energy source operation.


Author(s):  
Bounthanh Banhthasit ◽  
Chaowanan Jamroen ◽  
Sanchai Dechanupaprittha

<p>This paper proposes an optimal generation scheduling method for a power system integrated with renewable energy sources (RES) based distributed generations (DG) and energy storage systems (ESS) considering maximum harvesting of RES outputs and minimum power system operating losses. The main contribution aims at economically employing RES in a power system. In particular, maximum harvesting of renewable energy is achieved by the mean of ESS management. In addition, minimum power system operating losses can be obtained by properly scheduling operating of ESS and controllable generations. Particle Swam Optimization (PSO) algorithm is applied to search for a near global optimal solutions. The optimization problem is formulated and evaluated taking into account power system operating constraints. The different operation scenarios have been used to investigate the effective of the proposed method via DIgSILENT PowerFactory software. The proposed method is examined with IEEE standard 14-bus and 30-bus test systems. </p>


2021 ◽  
Vol 3 (2) ◽  
pp. 45-52
Author(s):  
Ali Nasser Hussain ◽  
Zuhair Sameen Shuker ◽  
Majid Khudair Abbas Al-Tamimi ◽  
Mimouna Abid

Solar energy is one of the most promising renewable energy sources. The potential solar energy has a capacity to meet all energy requirements for human survival on planet earth. Some applications such as a thermoelectric generator, electric power generation with the assistance of solar panels and water applications are required to reduce the demand for electricity generated by conventional power plants. The current work evaluates the effectiveness of solar energy for supplying the police building located in Diyala, Iraq. The installed renewable power system consists of photovoltaic/ battery system set with grid connection installed on the roof of the building with a capacity of 5.52 kWp and battery unit (200 A, 48 Volt). Based on the daily average load kWh and daily average solar irradiance for the selected site (4.3 kWh/m2), the results of the energy generated by the system for two selected days showed that for a sunny day is about (11.63 kWh) and for party cloudy day is about (8.02 kWh). The average of energy fed to the grid for a sunny day was recorded more by more than 3.0 kWh and for party cloudy day by more than 4.0 kWh.  The system installed at the first day of February of the year 2021. The obtained results encourage to install of photovoltaic systems in the selected site which can feed such facilities with renewable energy and deliver energy to the grid.


Sign in / Sign up

Export Citation Format

Share Document