El Paso's Advanced Water Purification Facility: A New Direction in Potable Reuse

2015 ◽  
Vol 107 (11) ◽  
pp. 36-45 ◽  
Author(s):  
George P. Maseeh ◽  
Caroline G. Russell ◽  
Sanaan Lair Villalobos ◽  
John E. Balliew ◽  
Gilbert Trejo
2017 ◽  
Vol 2017 (12) ◽  
pp. 2340-2347 ◽  
Author(s):  
P.S Kumar ◽  
A Salveson ◽  
D.K Ammerman ◽  
E Steinle-Darling ◽  
J.A Jackson ◽  
...  

2018 ◽  
Vol 110 (4) ◽  
pp. E19-E28 ◽  
Author(s):  
Brian M. Pecson ◽  
Elise C. Chen ◽  
Sarah C. Triolo ◽  
Aleksey N. Pisarenko ◽  
Simon Olivieri ◽  
...  

2010 ◽  
Vol 61 (5) ◽  
pp. 1157-1163 ◽  
Author(s):  
Jim Lozier ◽  
Ken Ortega

The City of Oxnard in California is implementing a strategic water resources program known as the Groundwater Recovery Enhancement and Treatment (GREAT) program, which includes an Advanced Water Purification Facility (AWPF) that will use a major portion of the secondary effluent from the City's existing Water Pollution Control Facility to produce high-quality treated water to be used for irrigation of edible food crops, landscape irrigation, injection into the groundwater basin to form a barrier to seawater intrusion, and other industrial uses. The AWPF, currently under design by CH2M HILL, will employ a multiple-barrier treatment train consisting of microfiltration, reverse osmosis, and ultravioletlightbased advanced oxidation processes to purify the secondary effluent to conform to California Department of Public Health Title 22 Recycled Water Criteria for groundwater recharge. The AWPF, which will have initial and build-out capacities of ca. 24,000 and ca 95,000 m3/day, respectively, was limited to a 1.8-hectare site, with 0.4 hectares dedicated to a Visitor's Center and administration building. Further, the depth below grade and height of the AWPF's structures were constrained because of the high groundwater table at the site, the high cost of excavation and dewatering, and local codes. To accommodate these various restrictions, an innovative design approach has been developed. This paper summarizes the design constraints and innovative solutions for the design of the AWPF.


2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Nusa Idaman Said

Water disinfection means the removal, deactivation or killing of pathogenic microorganisms. Microorganisms are destroyed or deactivated, resulting in termination of growth and reproduction. When microorganisms are not removed from drinking water, drinking water usage will cause people to fall ill. Chemical inactivation of microbiological contamination in natural or untreated water is usually one of the final steps to reduce pathogenic microorganisms in drinking water. Combinations of water purification steps (oxidation, coagulation, settling, disinfection, and filtration) cause (drinking) water to be safe after production. As an extra measure many countries apply a second disinfection step at the end of the water purification process, in order to protect the water from microbiological contamination in the water distribution system. Usually one uses a different kind of disinfectant from the one earlier in the process, during this disinfection process. The secondary disinfection makes sure that bacteria will not multiply in the water during distribution. This paper describes several technique of disinfection process for drinking water treatment. Disinfection can be attained by means of physical or chemical disinfectants. The agents also remove organic contaminants from water, which serve as nutrients or shelters for microorganisms. Disinfectants should not only kill microorganisms. Disinfectants must also have a residual effect, which means that they remain active in the water after disinfection. For chemical disinfection of water the following disinfectants can be used such as Chlorine (Cl2),  Hypo chlorite (OCl-), Chloramines, Chlorine dioxide (ClO2), Ozone (O3), Hydrogen peroxide etch. For physical disinfection of water the following disinfectants can be used is Ultraviolet light (UV). Every technique has its specific advantages and and disadvantages its own application area sucs as environmentally friendly, disinfection byproducts, effectivity, investment, operational costs etc. Kata Kunci : Disinfeksi, bakteria, virus, air minum, khlor, hip khlorit, khloramine, khlor dioksida, ozon, UV.


2017 ◽  
pp. 123-126
Author(s):  
S. V. Vorobjeva ◽  
O. V. Smirnov ◽  
V. O. Smirnova ◽  
T. V. Semenova

A correlation between the electrokinetic properties of biodispersion and the possibility of increasing the efficiency of water purification in electroprocessing is shown.


Sign in / Sign up

Export Citation Format

Share Document