DISINFEKSI UNTUK PROSES PENGOLAHAN AIR MINUM

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Nusa Idaman Said

Water disinfection means the removal, deactivation or killing of pathogenic microorganisms. Microorganisms are destroyed or deactivated, resulting in termination of growth and reproduction. When microorganisms are not removed from drinking water, drinking water usage will cause people to fall ill. Chemical inactivation of microbiological contamination in natural or untreated water is usually one of the final steps to reduce pathogenic microorganisms in drinking water. Combinations of water purification steps (oxidation, coagulation, settling, disinfection, and filtration) cause (drinking) water to be safe after production. As an extra measure many countries apply a second disinfection step at the end of the water purification process, in order to protect the water from microbiological contamination in the water distribution system. Usually one uses a different kind of disinfectant from the one earlier in the process, during this disinfection process. The secondary disinfection makes sure that bacteria will not multiply in the water during distribution. This paper describes several technique of disinfection process for drinking water treatment. Disinfection can be attained by means of physical or chemical disinfectants. The agents also remove organic contaminants from water, which serve as nutrients or shelters for microorganisms. Disinfectants should not only kill microorganisms. Disinfectants must also have a residual effect, which means that they remain active in the water after disinfection. For chemical disinfection of water the following disinfectants can be used such as Chlorine (Cl2),  Hypo chlorite (OCl-), Chloramines, Chlorine dioxide (ClO2), Ozone (O3), Hydrogen peroxide etch. For physical disinfection of water the following disinfectants can be used is Ultraviolet light (UV). Every technique has its specific advantages and and disadvantages its own application area sucs as environmentally friendly, disinfection byproducts, effectivity, investment, operational costs etc. Kata Kunci : Disinfeksi, bakteria, virus, air minum, khlor, hip khlorit, khloramine, khlor dioksida, ozon, UV.

2008 ◽  
Vol 43 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Rocio Aranda Rodriguez ◽  
Boniface Koudjonou ◽  
Brian Jay ◽  
Guy L. LeBel ◽  
Frank M. Benoit

Abstract A study was initiated to determine the presence of organic disinfection by-products (DBPs) in drinking water treated with chlorine dioxide (ClO2). One potential advantage for the use of ClO2 as a disinfectant is the reduced formation of organic DBPs. Generally, water treated with ClO2 produces chlorite and chlorate ions, but there is limited information regarding the presence of halogenated organic DBPs. Eight systems that use chlorine dioxide as part of the water disinfection process were investigated. All systems in this study applied chlorine as a primary or secondary disinfectant in addition to ClO2. To evaluate seasonal and spatial variations, water samples were collected during cold water (February to March 2003) and warm water (July to August 2003) months at five sites for each system: raw water (R, before treatment), treated water (T, after treatment but before distribution), and three points along the same distribution line (D1, D2, D3). Sampling and analysis were conducted according to established protocols. A suite of 27 organic DBPs including haloacetic acids (HAA), trihalomethanes (THM), haloacetonitriles (HAN), haloketones, haloacetaldehydes (HA), chloropicrin, and cyanogen chloride were examined. In addition, the concentration of oxyhalides (chlorite and chlorate ions) and auxiliary parameters were also determined. Chlorite was found in treated (T) and distributed (Dx) waters. The chlorite ion levels decreased along the distribution system (T > D1 > D2 > D3). At T sites, the levels ranged from 10 to 870 µg/L (winter), and from 300 to 1,600 µg/L (summer). Chlorite was not found in treated or distributed water in the one system that used ozone. Chlorate ion levels ranged from 20 to 310 µg/L (winter), and 80 to 318 µg/L (summer). Chlorate levels remained relatively constant throughout the distribution system. THM and eight HAA (HAA8) accounted for approximately 85% of the total DBPs (wt/wt) analyzed, followed by total HA (up to 7%) and HAN (3%). THM in distributed water were found at concentrations between 1.8 and 30.6 µg/L (winter), and 3.3 and 93.6 µg/L (summer). For HAA8, the levels ranged from 13 to 52 µg/L (winter), and 16 to 111 µg/L (summer). Chloral hydrate ranged from 0.2 to 5.2 µg/L (winter), and 0.4 to 12.2 µg/L (summer). The temporal and spatial variations observed in previous studies were confirmed in the current study as well.


2015 ◽  
Vol 737 ◽  
pp. 672-676
Author(s):  
Ran An ◽  
Ming Da Liu ◽  
Jun Xing Li ◽  
Xiao Wei Liu ◽  
Dan Yang

With the living standards improvement of rural residents, people pay more attention to the safety of drinking water in China. As the final step in drinking water treatment, disinfection technology has received much attention. At present, drinking water disinfection process is mainly involved in chlorine disinfection, chlorine dioxide disinfection, chloramine disinfection, disinfection of potassium permanganate, ozone disinfection and ultraviolet disinfection. However, due to limitations in rural economic conditions and management level, only ozone disinfection and ultraviolet disinfection are suitable for rural areas in China. This paper described some of the application problems and limitations in drinking water disinfection process, as well as the select principle in rural areas. The principle, research status, trends and issues in application of ozone and ultraviolet disinfection technology were emphatically introduced. Finally, the development of drinking water disinfection technologies was discussed.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 521
Author(s):  
Fernando J. Beltrán ◽  
Ana Rey ◽  
Olga Gimeno

Formation of disinfection byproducts (DBPs) in drinking water treatment (DWT) as a result of pathogen removal has always been an issue of special attention in the preparation of safe water. DBPs are formed by the action of oxidant-disinfectant chemicals, mainly chlorine derivatives (chlorine, hypochlorous acid, chloramines, etc.), that react with natural organic matter (NOM), mainly humic substances. DBPs are usually refractory to oxidation, mainly due to the presence of halogen compounds so that advanced oxidation processes (AOPs) are a recommended option to deal with their removal. In this work, the application of catalytic ozonation processes (with and without the simultaneous presence of radiation), moderately recent AOPs, for the removal of humic substances (NOM), also called DBPs precursors, and DBPs themselves is reviewed. First, a short history about the use of disinfectants in DWT, DBPs formation discovery and alternative oxidants used is presented. Then, sections are dedicated to conventional AOPs applied to remove DBPs and their precursors to finalize with the description of principal research achievements found in the literature about application of catalytic ozonation processes. In this sense, aspects such as operating conditions, reactors used, radiation sources applied in their case, kinetics and mechanisms are reviewed.


2001 ◽  
Vol 1 ◽  
pp. 39-43 ◽  
Author(s):  
V. Zitko

Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.


2009 ◽  
Vol 9 (4) ◽  
pp. 379-386 ◽  
Author(s):  
S. A. Baghoth ◽  
M. Dignum ◽  
A. Grefte ◽  
J. Kroesbergen ◽  
G. L. Amy

For drinking water treatment plants that do not use disinfectant residual in the distribution system, it is important to limit availability of easily biodegradable natural organic matter (NOM) fractions which could enhance bacterial regrowth in the distribution system. This can be achieved by optimising the removal of those fractions of interest during treatment; however, this requires a better understanding of the physical and chemical properties of these NOM components. Fluorescence excitation-emission matrix (EEM) and liquid chromatography with online organic carbon detection (LC-OCD) were used to characterize NOM in water samples from one of the two water treatment plants serving Amsterdam, The Netherlands. No disinfectant residual is applied in the distribution system. Fluorescence EEM and LC-OCD were used to track NOM fractions. Whereas fluorescence EEM shows the reduction of humic-like as well as protein-like fluorescence signatures, LC-OCD was able to quantify the changes in dissolved organic carbon (DOC) concentrations of five NOM fractions: humic substances, building blocks (hydrolysates of humics), biopolymers, low molecular weight acids and neutrals.


10.29007/fhdg ◽  
2018 ◽  
Author(s):  
Zhiyong Dong ◽  
Wenqian Zhao

Currently, in water supply engineering, the conventional technique of disinfection by chlorination is used to kill pathogenic microorganisms in raw water. However, chlorine reacts with organic compounds in water and generates disinfection byproducts (DBPs) such as trihalomethanes (THMs), haloacetic acids (HAAs) etc. These byproducts are of carcinogenic, teratogenic and mutagenic effects, which seriously threaten human health. Hydrodynamic cavitation is a novel technique of drinking water disinfection without DBPs. Turbulence structures of cavitating flow were observed by the Particle Image Velocimetry (PIV) technique in a self-developed hydrodynamic cavitation device due to square multi- orifice plates, including effects of orifice number and orifice layout on velocity distribution, turbulence intensity and Reynolds stress, which aimed at uncovering mechanism of killing pathogenic microorganisms by hydrodynamic cavitation.


Author(s):  
Funanani Mashau ◽  
Esper Jacobeth Ncube ◽  
Kuku Voyi

Abstract Currently, there is contradictory evidence for the risk of adverse pregnancy outcomes associated with maternal exposure to disinfection byproducts (DBPs). We examine the association between maternal exposure to trihalomethanes (THMs) in drinking water and adverse pregnancy outcomes, including premature birth, low birth weight (LBW) and small for gestational age (SGA). In total, 1,167 women older than 18 years were enrolled at public antenatal venues in two geographical districts. For each district, we measured the levels of residential drinking water DBPs (measured in THMs) through regulatory data and routine water sampling. We estimated the individual uptake of water of each woman by combining individual water use and uptake factors. Increased daily internal dose of total THMs during the third trimester of pregnancy significantly increased the risk of delivering premature infants (AOR 3.13, 95% CI 1.36–7.17). The risk of premature birth was also positiviely associated with exposure to total THMs during the whole pregnancy (AOR 2.89, 95% CI 1.25–6.68). The risk of delivering an SGA and LBW infant was not associated with maternal exposure to THMs. Our findings suggest that exposure to THMs is associated with certain negative pregnancy outcomes. The levels of THMs in water should be routinely monitored.


2018 ◽  
Vol 63 (1) ◽  
pp. 96-112 ◽  
Author(s):  
Barış Şimşek ◽  
İnci Sevgili ◽  
Özge Bildi Ceran ◽  
Haluk Korucu ◽  
Osman Nuri Şara

One of the ways of fully securing the presence of fresh water is water treatment process. Nanomaterials and nanotechnology offers an innovative solution for water treatment. In this study, physical, chemical and microbiological improvement rates of raw water were analyzed after filtration with graphene oxide. Graphene oxide's water treatment performance; silver nanoparticles, silver nanoparticles & graphene oxide composites that are commonly used in water treatment were compared with a traditional treatment method. When compared to the traditional method, there were improvements of 50 %, 40.7 %, 86.8 % and 45.5 % for color, TIC, TOC and hardness properties, respectively in water treatment by GO-based filtration with solid liquid ratio of 0.7 % (v/v). In water treatment with GO-Ag based filtration, 39.8 %, 69.8 %, 10.3 % and 28.6 % of improvements were obtained for TIC, TOC, hardness and LSI value compared to the conventional method. Both GO at 0.7 % (v/v) solid-liquid ratio and GO-Ag nanocomposites were successful in the number of total viable microorganisms and inhibiting microorganisms such as Escherichia coli fecal (gaita-infected), Salmonella typhi, Enterococcus faecalis, Pseudomona aeruginosa and Staphylococcus aureus. Among the studied parameters GO-Ag nanocomposites found to be the most suitable for drinking water treatment.


1997 ◽  
Vol 35 (11-12) ◽  
pp. 81-86 ◽  
Author(s):  
J. C. Joret ◽  
V. Mennecart ◽  
C. Robert ◽  
B. Compagnon ◽  
P. Cervantes

The aim of this study was to compare the level of removal and inactivation of indigenous bacteria during drinking water production as evaluated by culture techniques and epifluorescent microscopic counts of metabolically active bacteria (in situ respiring bacteria i.e. able to metabolise CTC: cyano 2,3-ditolyl tetrazolium chloride). Two sets of experiments were designed: a) bacterial counts through a full scale drinking water treatment plant (multibarrier treatment including coagulation-flocculation-settling, sand filtration, ozonation, biological GAC filtration, post-chlorination) and distribution system; b) benchscale disinfection studies in order to re-evaluate the C.t values necessary to inactivate laboratory grown E. coli or indigenous bacteria from water by ozone and chlorine. Main conclusions of this study are: a) significant amounts of in situ respiring bacteria (undetected by the classical culture techniques) are detected in finished water; b) the efficiency of ozone and chlorine recorded by microscopic counts of active bacteria is much less than supposed by classical enumerations of culturable bacteria; c) previous results reported in the literature may have largely overestimated the bactericidal efficiency of disinfectants used for producing drinking water.


Sign in / Sign up

Export Citation Format

Share Document