What's in a Model? Issues in the Use of Simulation Models to Analyze Student Understanding: A Reaction to Ohlsson, Ernst, and Rees

1992 ◽  
Vol 23 (5) ◽  
pp. 468-473
Author(s):  
Alan H. Schoenfeld

Ohlsson. Ernst, and Rees (this issue) have produced a wonderfully lucid description of their paradigmatic approach to issues of cognition and instruction. They illustrate their approach by presenting the details of a well worked out computational model. Then, on the basis of simulation runs on the model, they derive some implications for prac tice. The authors have also laid down some rather stringent constraints for commentary. Do not critique our paradigms, they say, unless you can offer a replacement that does better. Do not critique the choice of knowledge representation (production systems) or modeling assumptions (e.g., limitations on working memory) unless you have compelling data to offer in service of your argument and in contradiction of our assumptions. Argument about details is useful, they say, but that won't change the conclusions we draw. So what's a reviewer to do?

Author(s):  
Marta K. Isaeva

The paper dedicates in commemoration of K.A. Bagrinovsky, known scientist, doctor of economic sciences, professor. His thesis was theoretic problems of mathematical modeling and operation of economy. His works in the operations research, the methods making decision, the simulation were received in scientific world. The analysis and the modeling of the mechanisms for scientific and technological development for the production systems of different level in economic hierarchic both centrally controlled economy and making mechanism were conduced by Bagrinovsky in CEMI RAS. The paper presents the investigations (2001–2015) of the analysis and the simulation of the different mechanisms of the innovational activity. It also discusses the methods of the development the complex of the simulation models. In a sense simulation modeling is the science and the art as the selection of the salient parameters for the construction model, intake simplification, the computer experiment and the making decision based on scarcity of accuracy models rest on the heuristic power of men: the practical trial, the intelligence and the intuition. K.A. Bagrinovsky introduced the considerable endowment in the development of this direction for economic and mathematical investigation.The principal object was to show that the relationship between the innovational policy and the technological structure, scientific research sector and the introducing of the progressive production and the organizational structure is obtainable by the models. The character of these relationships may be to use in control of the parameters for the modernization economic. The construction simulation models and the experimental computation analysis were presented the investigations the different mechanisms of the innovational development ant the variants of the estimation have been accomplished on the modeling level by the computer experiment.


1999 ◽  
pp. 375-411 ◽  
Author(s):  
Randall C. O'Reilly ◽  
Todd S. Braver ◽  
Jonathan D. Cohen

2018 ◽  
Vol 226 ◽  
pp. 02019 ◽  
Author(s):  
Evgeniya P. Klyuchka ◽  
Viktor V. Radin ◽  
Leonid M. Groshev ◽  
Valeriy P. Maksimov

The fundamentals of an interdisciplinary approach to the design of greenhouse production systems are considered, in which biological objects (plants and humans) are present. The conceptual approach of the software solution is analyzed, synthesizing on the basis of the objectoriented concept such directions as disciplines on the construction of greenhouse production, dynamic simulation models, geoinformation systems. Based on the study of this issue, the conclusion was made about the advisability of applying an interdisciplinary approach for a comprehensive study of the projected complex biotechnical systems of greenhouse production.


Author(s):  
Djamila Haroud ◽  
Sylvie Boulanger ◽  
Esther Gelle ◽  
Ian Smith

AbstractMuch of preliminary engineering design is a constraint-driven non-monotonic exploration process. Initial decisions are made when information is incomplete and many goals are contradictory. Such conditions are present regardless of whether one or several designers contribute to designs. This paper presents an approach for supporting decisions in situations of incomplete and conflicting knowledge. In particular, we use assumptions and conflict management to achieve efficient search in contexts where little reliable information exists. A knowledge representation, containing a semantic differentiation between two types of assumptions, is used within a computational model based on the dynamic constraint satisfaction paradigm. Conflict management strategies consist of three generic mechanisms adapted to the type of constraints involved. These strategies may be refined through consideration of variable importance, context, and design inertia.


2006 ◽  
Vol 18 (2) ◽  
pp. 283-328 ◽  
Author(s):  
Randall C. O'Reilly ◽  
Michael J. Frank

The prefrontal cortex has long been thought to subserve both working memory (the holding of information online for processing) and executive functions (deciding how to manipulate working memory and perform processing). Although many computational models of working memory have been developed, the mechanistic basis of executive function remains elusive, often amounting to a homunculus. This article presents an attempt to deconstruct this homunculus through powerful learning mechanisms that allow a computational model of the prefrontal cortex to control both itself and other brain areas in a strategic, task-appropriate manner. These learning mechanisms are based on subcortical structures in the midbrain, basal ganglia, and amygdala, which together form an actor-critic architecture. The critic system learns which prefrontal representations are task relevant and trains the actor, which in turn provides a dynamic gating mechanism for controlling working memory updating. Computationally, the learning mechanism is designed to simultaneously solve the temporal and structural credit assignment problems. The model's performance compares favorably with standard backpropagation-based temporal learning mechanisms on the challenging 1-2-AX working memory task and other benchmark working memory tasks.


Sign in / Sign up

Export Citation Format

Share Document