Implementing the Standards: Developing Communication Skills in Mathematics for Students with Limited English Proficiency

1991 ◽  
Vol 84 (3) ◽  
pp. 186-189
Author(s):  
Gilbert J. Cuevas

The Curriculum and Evaluation Standards for School Mathematics (NCTM 1989) emphasizes the need to address communication skills. These skills, including reading, writing, listening, and speaking, enhance mathematical understanding and problem-solving ability. Moreover, to communicate effectively, one must be able to interpret and analyze mathematical ideas. The curriculum and evaluation standards recommend that opportunities be afforded students to “use language to communicate their mathematical ideas” (NCTM 1989, 78). Although these recommendations are valuable, teachers may find them difficult to implement with students who are not proficient in English.

1990 ◽  
Vol 83 (4) ◽  
pp. 264-268
Author(s):  
Stanley F. Taback

In calling for reform in the teaching and learning of mathematics, the Curriculum and Evaluation Standards for School Mathematics (Standards) developed by NCTM (1989) envisions mathematics study in which students reason and communicate about mathematical ideas that emerge from problem situations. A fundamental premise of the Standards, in fact, is the belief that “mathematical problem solving … is nearly synonymous with doing mathematics” (p. 137). And the ability to solve problems, we are told, is facilitated when students have opportunities to explore “connections” among different branches of mathematics.


1999 ◽  
Vol 5 (7) ◽  
pp. 390-394
Author(s):  
Robyn Silbey

In An Agenda for Action, the NCTM asserted that problem solving must be at the heart of school mathematics (1980). Almost ten years later, the NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) stated that the development of each student's ability to solve problems is essential if he or she is to be a productive citizen. The Standards assumed that the mathematics curriculum would emphasize applications of mathematics. If mathematics is to be viewed as a practical, useful subject, students must understand that it can be applied to various real-world problems, since most mathematical ideas arise from the everyday world. Furthermore, the mathematics curriculum should include a broad range of content and an interrelation of that content.


1997 ◽  
Vol 90 (3) ◽  
pp. 194-200
Author(s):  
Lydotta M. Taylor ◽  
Joann L. King

The NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) encourages teachers to include activities that help students “construct and draw inferences from charts, tables, and graphs that summarize data from real-world situations” (p. 167) and “express mathematical ideas orally and in writing” (p. 140). The following activities combine data gathering and analysis with cooperative learning, mathematical connections, reasoning, problem solving, and communication.


1993 ◽  
Vol 86 (8) ◽  
pp. 668-675
Author(s):  
Ruth McClintock

The NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) offers a vision of mathematically empowered students embarking on exciting flights of discovery. This vision challenges teachers to look for ways to incorporate problem solving, cooperative learning, mathematical connections, reasoning, communication skills, and proofs into lesson plans. The Pixy Stix activities described in this article are not quite as magical as Peter Pan and Tinkerbell's prescription of sprinkling pixie dust over children who want to fly, but they do embody all the attributes mentioned above and may enable your high school geometry students to take off in some surprising directions.


1995 ◽  
Vol 1 (6) ◽  
pp. 332-335
Author(s):  
Kothleen Cramer ◽  
Lee Karnowski

Mathematics as Problem Solving, Mathematics as Communication. Mathematics as Reasoning, and Mathematical Connections—these four Standards, which open the NCTM's Curriculum and Evaluation Standards for School Mathematics (1989), can be considered the pedagogical standards.


1990 ◽  
Vol 83 (3) ◽  
pp. 194-198
Author(s):  
M. Kathleen Heid

The NCTM's Curriculum and Evaluation Standards for School Mathematics (Stan dards) (1989) designates four standards that apply to all students at all grade levels: mathematics as problem solving, mathematics as communication, mathematics as reasoning, and mathematical connections. These and NCTM's other standards are embedded in a vision of technologically rich school mathematics classrooms in which students and teachers have constant access to appropriate computing devices and in which students use computers and calculators as tools for the investigation and exploration of problems.


1996 ◽  
Vol 2 (7) ◽  
pp. 426-431
Author(s):  
Louis M. friedler

The NCTM's Curriculum and Evaluation Standards for School Mathematics (1981) calls for an emphasis on problem solving at all levels and recommends introducing discrete mathematics topics. In fact, the first standard for grades K-4 states that “the study of mathematics should emphasize problem solving …” (p. 23).


1998 ◽  
Vol 4 (1) ◽  
pp. 20-25
Author(s):  
Michael G. Mikusa

The curriculum and evaluation Standards for School Mathematics (NCTM 1989) states that one of its five general goals is for all students to become mathematical problem solvers. It recommends that “to develop such abilities, students need to work on problems that may take hours, days, and even weeks to solve” (p. 6). Clearly the authors have not taught my students! When my students first encountered a mathematical problem, they believed that it could be solved simply because it was given to them in our mathematics class. They also “knew” that the technique or process for finding the solution to many problems was to apply a skill or procedure that had been recently taught in class. The goal for most of my students was simply to get an answer. If they ended up with the correct answer, great; if not, they knew that it was “my job” to show them the “proper” way to go about solving the problem.


2002 ◽  
Vol 7 (9) ◽  
pp. 484-488
Author(s):  
Christine Thomas ◽  
Carmelita Santiago

Connections in mathematics can be implemented in ways that create excitement in the classroom, develop in students a love for doing mathematics, and foster students' natural inclination for pursuing mathematical tasks. According to the Curriculum and Evaluation Standards for School Mathematics, “If students are to become mathematically powerful, they must be flexible enough to approach situations in a variety of ways and recognize the relationships among different points of view” (NCTM 1989, p. 84). Principles and Standards for School Mathematics (NCTM 2000) further asserts that students develop a deeper and more lasting understanding of mathematics when they are able to connect mathematical ideas. The 1989 and 2000 Standards clearly delineate the power and importance of connections in the mathematics curriculum. This article examines and compares curricular recommendations for connections in the two documents.


1992 ◽  
Vol 39 (9) ◽  
pp. 19-21
Author(s):  
Charles P. Geer

As teachers use NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) to develop programs that will prepare students for the twenty-first century, some are discovering that mathematics instruction is going to be very different in the 1990s. Many previous programs placed a heavy emphasis on paper-and-pencil proficiency with computational skills and learning mathematics by memorizing rules. Because of advances in technology, new knowledge about how learning occurs, and the changing needs of business and industry, future programs will focus on mathematics with meaning, problem solving, and higher-level cognitive skills.


Sign in / Sign up

Export Citation Format

Share Document