Mathematical Modeling and the Presidential Election

1992 ◽  
Vol 85 (7) ◽  
pp. 520-521
Author(s):  
Joseph C. Witkowski

In recent years, interest in problem solving and mathematical modeling has increased. In 1975, the Conference Board of the Mathematical Sciences issued its Overview and Analysis of School Mathematics K-12, which recommended the incorporation of mathematical applications and modeling into secondary schools. More recently the Curriculum and Evaluation Standards for School Mathematics (1989) formulated by the NCTM stressed the importance of mathematical modeling as a facet of problem solving. The purpose of this article is to look at an interesting mathematical-modeling problem regarding presidential elections.

1990 ◽  
Vol 38 (2) ◽  
pp. 8-10
Author(s):  
Sue Brown

In 1980, the National Council of Teachers of Mathematics stated that “problem solving must be the focus of school mathematics.” In 1989 the Council reaffirmed that belief with the Curriculum and Evaluation Standards for School Mathematics (Standards). Standard 1 for grades K–12 is “Mathematics as Problem Solving.” The Standards also asserts that “a computer should be available in every classroom for demonstration purposes, and every student should have access to a computer for individual and group work.” Also according to the Standards, “manipulative materials are necessary for good mathematics instruction.” In a typical classroom, problem solving may be taught, manipulative materials may be used, or students may be working at a computer. These functions, however, are usually completed as disjoint activities. Integrating these activities is possible, and this article illustrates how it can be done.


1990 ◽  
Vol 83 (8) ◽  
pp. 628-635
Author(s):  
Daniel Chazan

Four important themes presented in the K–12 Curriculum and Evaluation Standards for School Mathematics (Standards) (NCTM 1989) are mathematics as problem solving, mathematics as communication, mathematics as reasoning, and mathematical connections. The high school component also stresses mathematical structure. Furthermore, the Standards calls for new roles for teachers and students and suggests that microcomputer technology can help support teachers and students in taking on these new roles.


1996 ◽  
Vol 89 (2) ◽  
pp. 108-111
Author(s):  
Albert B. Bennett ◽  
Eugene Maier

In the Curriculum and Evaluation Standards for School Mathematics (NCTM 1989), the 9–12 standards call for a shift from a curriculum dominated by memorization of isolated facts and procedures to one that emphasizes conceptual understandings, multiple representations and connections, mathematical modeling, and mathematical problem solving. One approach that affords opportunities for achieving these objectives is the use of diagrams and drawings. The familiar saying “A picture is worth a thousand words” could well be modified for mathematics to “A picture is worth a thousand numbers.” As an example of visual approaches in algebra, this article uses diagrams to solve mixture problems.


1994 ◽  
Vol 1 (2) ◽  
pp. 130-136
Author(s):  
Gary Kader ◽  
Mike Perry

In its Curriculum and Evaluation Standards for School Mathematics (1989), the National Council of Teachers of Mathematics recommends that the K-12 mathematics curriculum be broadened and designates statistics as an area deserving increased attention. The standards document promotes the concept that statistics be learned through the study of real problems with real data collected by the students. Rather than focus on developing formulas from which answers are simply computed, teachers should present statistics in a coherent fashion and develop the topic as a whole problem-solving process.


1985 ◽  
Vol 78 (1) ◽  
pp. 36-44
Author(s):  
Robert A. Laing

Introduction: Recognizing that the mathematics curriculum in grades K-12 must include more than the concepts and skills of mathematics to prepare students to be productive and contributing members of a rapidly changing technological society, the Agenda for Action (NCTM 1980, 3, 4) recommends that problem solving be the focus of school mathematics in the 1980s.


1990 ◽  
Vol 83 (4) ◽  
pp. 264-268
Author(s):  
Stanley F. Taback

In calling for reform in the teaching and learning of mathematics, the Curriculum and Evaluation Standards for School Mathematics (Standards) developed by NCTM (1989) envisions mathematics study in which students reason and communicate about mathematical ideas that emerge from problem situations. A fundamental premise of the Standards, in fact, is the belief that “mathematical problem solving … is nearly synonymous with doing mathematics” (p. 137). And the ability to solve problems, we are told, is facilitated when students have opportunities to explore “connections” among different branches of mathematics.


1990 ◽  
Vol 83 (3) ◽  
pp. 194-198
Author(s):  
M. Kathleen Heid

The NCTM's Curriculum and Evaluation Standards for School Mathematics (Stan dards) (1989) designates four standards that apply to all students at all grade levels: mathematics as problem solving, mathematics as communication, mathematics as reasoning, and mathematical connections. These and NCTM's other standards are embedded in a vision of technologically rich school mathematics classrooms in which students and teachers have constant access to appropriate computing devices and in which students use computers and calculators as tools for the investigation and exploration of problems.


1996 ◽  
Vol 2 (7) ◽  
pp. 426-431
Author(s):  
Louis M. friedler

The NCTM's Curriculum and Evaluation Standards for School Mathematics (1981) calls for an emphasis on problem solving at all levels and recommends introducing discrete mathematics topics. In fact, the first standard for grades K-4 states that “the study of mathematics should emphasize problem solving …” (p. 23).


1998 ◽  
Vol 4 (1) ◽  
pp. 20-25
Author(s):  
Michael G. Mikusa

The curriculum and evaluation Standards for School Mathematics (NCTM 1989) states that one of its five general goals is for all students to become mathematical problem solvers. It recommends that “to develop such abilities, students need to work on problems that may take hours, days, and even weeks to solve” (p. 6). Clearly the authors have not taught my students! When my students first encountered a mathematical problem, they believed that it could be solved simply because it was given to them in our mathematics class. They also “knew” that the technique or process for finding the solution to many problems was to apply a skill or procedure that had been recently taught in class. The goal for most of my students was simply to get an answer. If they ended up with the correct answer, great; if not, they knew that it was “my job” to show them the “proper” way to go about solving the problem.


1999 ◽  
Vol 5 (7) ◽  
pp. 390-394
Author(s):  
Robyn Silbey

In An Agenda for Action, the NCTM asserted that problem solving must be at the heart of school mathematics (1980). Almost ten years later, the NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) stated that the development of each student's ability to solve problems is essential if he or she is to be a productive citizen. The Standards assumed that the mathematics curriculum would emphasize applications of mathematics. If mathematics is to be viewed as a practical, useful subject, students must understand that it can be applied to various real-world problems, since most mathematical ideas arise from the everyday world. Furthermore, the mathematics curriculum should include a broad range of content and an interrelation of that content.


Sign in / Sign up

Export Citation Format

Share Document