A Visual Approach to Solving Mixture Problems

1996 ◽  
Vol 89 (2) ◽  
pp. 108-111
Author(s):  
Albert B. Bennett ◽  
Eugene Maier

In the Curriculum and Evaluation Standards for School Mathematics (NCTM 1989), the 9–12 standards call for a shift from a curriculum dominated by memorization of isolated facts and procedures to one that emphasizes conceptual understandings, multiple representations and connections, mathematical modeling, and mathematical problem solving. One approach that affords opportunities for achieving these objectives is the use of diagrams and drawings. The familiar saying “A picture is worth a thousand words” could well be modified for mathematics to “A picture is worth a thousand numbers.” As an example of visual approaches in algebra, this article uses diagrams to solve mixture problems.

1990 ◽  
Vol 83 (4) ◽  
pp. 264-268
Author(s):  
Stanley F. Taback

In calling for reform in the teaching and learning of mathematics, the Curriculum and Evaluation Standards for School Mathematics (Standards) developed by NCTM (1989) envisions mathematics study in which students reason and communicate about mathematical ideas that emerge from problem situations. A fundamental premise of the Standards, in fact, is the belief that “mathematical problem solving … is nearly synonymous with doing mathematics” (p. 137). And the ability to solve problems, we are told, is facilitated when students have opportunities to explore “connections” among different branches of mathematics.


2020 ◽  
Vol 13 (2) ◽  
pp. 130-151
Author(s):  
Kadek Adi Wibawa ◽  
I Putu Ade Andre Payadnya ◽  
I Made Dharma Atmaja ◽  
Marius Derick Simons

 [English]: The fragmentation of thinking structure is a failed construction existing in students’ memory due to disconnections on what they have learned. It makes students undergo difficulties and errors in solving mathematical modeling problems. There is a need to prevent permanent fragmentations. The problem-solving involving modeling problems requires translational thinking, changing from source representations to targeted representations. This research aimed to formulate undergraduate students’ effort in restructuring their fragmented translational thinking (defragmentation of translational thinking structure). The defragmentation was mapped through the CRA framework (checking, repairing, ascertaining). The subjects were three of eighty-five 4th and 6th-semester students. Data were analyzed through three stages; categorization, reduction, and conclusion. The analysis resulted in three types of defragmentation of translational thinking structure: from verbal representations to graph representations, from graph representations to symbolic representations (algebraic forms), and from the graph and symbolic representations to mathematical models. The finding shows that it is essential for mathematics educators to allow students to manage their thinking structures while experiencing difficulties and errors in mathematical problem-solving. Keywords: Thinking structure, Fragmentation, Defragmentation, Translational thinking, CRA framework  [Bahasa]: Fragmentasi struktur berpikir merupakan kegagalan konstruksi yang terjadi di dalam memori akibat dari konsep-konsep yang dipelajari tidak terkoneksi dengan baik. Hal ini membuat mahasiswa sering mengalami kesulitan dan kesalahan dalam memecahkan masalah pemodelan matematika. Untuk itu, perlu dilakukan upaya agar tidak terjadi fragmentasi struktur berpikir yang permanen. Dalam memecahkan masalah pemodelan matematika, mahasiswa perlu melakukan berpikir translasi, yaitu mengubah representasi sumber menjadi representasi yang ditargetkan. Penelitian ini bertujuan untuk merumuskan upaya mahasiswa dalam melakukan penataan fragmentasi struktur berpikir translasi yang terjadi (defragmentasi struktur berpikir translasi) dalam memecahkan masalah pemodelan matematika. Defragmentasi yang dilakukan mahasiswa dipetakan melalui kerangka CRA (checking, repairing, dan ascertaining). Subjek penelitian adalah mahasiswa semester 4 dan 6 yang terdiri dari 3 orang dipilih dari 85 mahasiswa. Analisis data dilakukan melalui tiga tahap, yaitu pengategorian data, reduksi data, dan penarikan kesimpulan. Penelitian ini menemukan tiga jenis defragmentasi struktur berpikir translasi: defragmentasi dari representasi verbal ke grafik, dari representasi grafik ke simbol (bentuk aljabar), dan representasi grafik dan simbol (bentuk aljabar) ke model matematika. Penelitian ini menunjukkan pentingnya pengajar matematika memberikan kesempatan kepada mahasiswa dalam menata struktur berpikirnya ketika mengalami kesulitan dan kesalahan dalam memecahkan masalah matematika. Kata kunci: Struktur berpikir, Fragmentasi, Defragmentasi, Berpikir translasi, Kerangka CRA


1998 ◽  
Vol 4 (1) ◽  
pp. 20-25
Author(s):  
Michael G. Mikusa

The curriculum and evaluation Standards for School Mathematics (NCTM 1989) states that one of its five general goals is for all students to become mathematical problem solvers. It recommends that “to develop such abilities, students need to work on problems that may take hours, days, and even weeks to solve” (p. 6). Clearly the authors have not taught my students! When my students first encountered a mathematical problem, they believed that it could be solved simply because it was given to them in our mathematics class. They also “knew” that the technique or process for finding the solution to many problems was to apply a skill or procedure that had been recently taught in class. The goal for most of my students was simply to get an answer. If they ended up with the correct answer, great; if not, they knew that it was “my job” to show them the “proper” way to go about solving the problem.


1992 ◽  
Vol 85 (7) ◽  
pp. 520-521
Author(s):  
Joseph C. Witkowski

In recent years, interest in problem solving and mathematical modeling has increased. In 1975, the Conference Board of the Mathematical Sciences issued its Overview and Analysis of School Mathematics K-12, which recommended the incorporation of mathematical applications and modeling into secondary schools. More recently the Curriculum and Evaluation Standards for School Mathematics (1989) formulated by the NCTM stressed the importance of mathematical modeling as a facet of problem solving. The purpose of this article is to look at an interesting mathematical-modeling problem regarding presidential elections.


2003 ◽  
Vol 96 (3) ◽  
pp. 185-187 ◽  
Author(s):  
Kenneth M. Williams

Problem solving is generally recognized as one of the most important components of mathematics. In Principles and Standards for School Mathematics, the National Council of Teachers of Mathematics emphasized that instructional programs should enable all students in all grades to “build new mathematical knowledge through problem solving, solve problems that arise in mathematics and in other contexts, apply and adapt a variety of appropriate strategies to solve problems, and monitor and reflect on the process of mathematical problem solving” (NCTM 2000, p. 52). But how do students become competent and confident mathematical problem solvers?


1996 ◽  
Vol 89 (9) ◽  
pp. 774-779
Author(s):  
Charles Vonder Embse ◽  
Arne Engebretsen

Technology can be used to promote students' understanding of mathematical concepts and problem-solving techniques. Its use also permits students' mathematical explorations prior to their formal development in the mathematics curriculum and in ways that can capture students' curiosity, imagination, and interest. The NCTM's Curriculum and Evaluation Standards for School Mathematics (1989) recommends that “[i]n grades 9–12, the mathematics curriculum should include the refinement and extension of methods of mathematical problem solving so that all students can … apply the process of mathematical modeling to real-world problem situations” (p. 137). Students empowered with technology have the opportunity to model real-world phenomena and visualize relationships found in the model while gaining ownership in the learning process.


1998 ◽  
Vol 91 (5) ◽  
pp. 388-392
Author(s):  
Duane W. DeTemple ◽  
Marjorie Ann Fitting

The Curriculum and Evaluation Standards for School Mathematics (NCTM 1989) challenges the teacher to shift away from memorization and set procedures. Instead, teachers should emphasize developing flexible strategies of problem solving, finding multiple representations, and making connections to other areas of mathematics and to the real world. The cevian problem presented here illustrates how to implement this shift of emphasis.


2018 ◽  
Vol 3 (1) ◽  
pp. 1-16
Author(s):  
Sarah Inayah

Mathematical problem solving and multiple representation ability is essential to develop. So it needs a study to facilitate the students to be active, interesting and challenging for students to think and therefore contributes to the students ability to represent, understand the material during learning process and solve mathematical problems. Quantum learning model puts students on comfortable and pleasant condition so that students can play an active role in the learning process and student expected to get the flexibility to bring their own representation and easy to solve the problem. The main objective of this study was to determine the improvement in the mathematical problem solving and multiple representation of students who obtain quantum learning model and students who received conventional learning, as well as to determine the relationship between the mathematical problem solving and multiple representations. This research is a quasi experimental with non equivalent control group design. The population of this study are all students of class VII with two classes of them as samples. The research data obtained through problem-solving ability and multiple mathematical representations test. The results showed that: (a). Quantum learning model can improve the mathematical problem solving and multiple representations ability, (b). there is a relationship between the mathematical problem solving and multiple representations ability.


Sign in / Sign up

Export Citation Format

Share Document