Multiobjective Design Optimization of an IACC Sailing Yacht by Means of CFD High-Fidelity Solvers

2005 ◽  
Author(s):  
Daniele Peri ◽  
Fabrizio Mandolesi

Performance differences in box rule racing yachts, such as the International America’s Cup Class (IACC), have progressively decreased, and the gap between the winner and the loser is on the order of a percentage point. Numerical optimization techniques can help the design team by identifying the best course of action for improving the design. However, optimization techniques must fulfill two major requirements; reliability and efficiency. Reliability is obtained by applying edge class CFD solvers, like RANSE solvers. Efficiency is gained by utilizing popular algorithms for local optimization using Global Optimization (GO) techniques. In this context, two different multiobjective optimization problems are formulated and solved. The outcome of this optimization process is a suite of optimal solutions. In this way, the design team is not compelled to accept a single final solution, but will be able to evaluate the trade-off between the different alternatives, selecting the one that represents the best compromise among all the requirements.

1996 ◽  
Vol 4 (1) ◽  
pp. 1-32 ◽  
Author(s):  
Zbigniew Michalewicz ◽  
Marc Schoenauer

Evolutionary computation techniques have received a great deal of attention regarding their potential as optimization techniques for complex numerical functions. However, they have not produced a significant breakthrough in the area of nonlinear programming due to the fact that they have not addressed the issue of constraints in a systematic way. Only recently have several methods been proposed for handling nonlinear constraints by evolutionary algorithms for numerical optimization problems; however, these methods have several drawbacks, and the experimental results on many test cases have been disappointing. In this paper we (1) discuss difficulties connected with solving the general nonlinear programming problem; (2) survey several approaches that have emerged in the evolutionary computation community; and (3) provide a set of 11 interesting test cases that may serve as a handy reference for future methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hai Shen ◽  
Yunlong Zhu ◽  
Xiaodan Liang

Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO). Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.


2021 ◽  
Vol 40 (2) ◽  
pp. 126-133
Author(s):  
MM Rizvi ◽  
HS Faruque Alam ◽  
Ganesh Chandra Ray

In this paper, we propose that the Lagrangian relaxation approach can be used to approximate the Pareto front of the multiobjective optimization problems. We introduce Lagrangian relaxation approach to solve scalarized subproblems. The scalarization is a technique employed to transform multiple objectives optimization problems into single-objective optimization problems so that existing optimization techniques are used to solve the problems. The relaxation approach exploits transformation and creates a Lagrangian problem in which some of the constraints are replaced from the original problem to make the problem easier to solve.  The method is very effective when the problem is large scale and difficult to solve; this means if the problem has nonconvex and nonsmooth structure, then our proposed method efficiently solves the problem. We succeed in establishing proper Karush Kuhn-Tucker type necessary conditions for our proposed approach. We establish the relation between our proposed approach and the well-known existing approach weighted-sum scalarization methods. We conduct extensive numerical experiments and demonstrated the advantages of the proposed method of adopting a test problem. GANIT J. Bangladesh Math. Soc. 40.2 (2020) 126-133


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


Author(s):  
Firoz Ahmad

AbstractThis study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function method. Also, we have developed a novel interactive neutrosophic programming approach to solve multiobjective optimization problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-27
Author(s):  
Bekir Afsar ◽  
Kaisa Miettinen ◽  
Francisco Ruiz

Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time as (s)he learns about all different aspects of the problem. A wide variety of interactive methods is nowadays available, and they differ from each other in both technical aspects and type of preference information employed. Therefore, assessing the performance of interactive methods can help users to choose the most appropriate one for a given problem. This is a challenging task, which has been tackled from different perspectives in the published literature. We present a bibliographic survey of papers where interactive multiobjective optimization methods have been assessed (either individually or compared to other methods). Besides other features, we collect information about the type of decision-maker involved (utility or value functions, artificial or human decision-maker), the type of preference information provided, and aspects of interactive methods that were somehow measured. Based on the survey and on our own experiences, we identify a series of desirable properties of interactive methods that we believe should be assessed.


2021 ◽  
Vol 10 (7) ◽  
pp. 426
Author(s):  
Tingting Lan ◽  
Danyang Qin ◽  
Guanyu Sun

In recent years, due to the strong mobility, easy deployment, and low cost of unmanned aerial vehicles (UAV), great interest has arisen in utilizing UAVs to assist in wireless communication, especially for on-demand deployment in emergency situations and temporary events. However, UAVs can only provide users with data transmission services through wireless backhaul links established with a ground base station, and the limited capacity of the wireless backhaul link would limit the transmission speed of UAVs. Therefore, this paper designed a UAV-assisted wireless communication system that used cache technology and realized the transmission of multi-user data by using the mobility of UAVs and wireless cache technology. Considering the limited storage space and energy of UAVs, the joint optimization problem of the UAV’s trajectory, cache placement, and transmission power was established to minimize the mission time of the UAV. Since this problem was a non-convex problem, it was decomposed into three sub-problems: trajectory optimization, cache placement optimization, and power allocation optimization. An iterative algorithm based on the successive convex approximation and alternate optimization techniques was proposed to solve these three optimization problems. Finally, in the power allocation optimization, the proposed algorithm was improved by changing the optimization objective function. Numerical results showed that the algorithm had good performance and could effectively reduce the task completion time of the UAV.


Sign in / Sign up

Export Citation Format

Share Document