scholarly journals Robust neutrosophic programming approach for solving intuitionistic fuzzy multiobjective optimization problems

Author(s):  
Firoz Ahmad

AbstractThis study presents the modeling of the multiobjective optimization problem in an intuitionistic fuzzy environment. The uncertain parameters are depicted as intuitionistic fuzzy numbers, and the crisp version is obtained using the ranking function method. Also, we have developed a novel interactive neutrosophic programming approach to solve multiobjective optimization problems. The proposed method involves neutral thoughts while making decisions. Furthermore, various sorts of membership functions are also depicted for the marginal evaluation of each objective simultaneously. The different numerical examples are presented to show the performances of the proposed solution approach. A case study of the cloud computing pricing problem is also addressed to reveal the real-life applications. The practical implication of the current study is also discussed efficiently. Finally, conclusions and future research scope are suggested based on the proposed work.

Author(s):  
Bennet Gebken ◽  
Sebastian Peitz

AbstractWe present an efficient descent method for unconstrained, locally Lipschitz multiobjective optimization problems. The method is realized by combining a theoretical result regarding the computation of descent directions for nonsmooth multiobjective optimization problems with a practical method to approximate the subdifferentials of the objective functions. We show convergence to points which satisfy a necessary condition for Pareto optimality. Using a set of test problems, we compare our method with the multiobjective proximal bundle method by Mäkelä. The results indicate that our method is competitive while being easier to implement. Although the number of objective function evaluations is larger, the overall number of subgradient evaluations is smaller. Our method can be combined with a subdivision algorithm to compute entire Pareto sets of nonsmooth problems. Finally, we demonstrate how our method can be used for solving sparse optimization problems, which are present in many real-life applications.


1986 ◽  
Vol 108 (4) ◽  
pp. 461-468 ◽  
Author(s):  
S. S. Rao ◽  
H. R. Eslampour

The problems of kinematic and strength designs of multispeed gearboxes are formulated as multiobjective optimization problems. In the kinematic design stage, the speeds of all the shafts, the number of teeth on various gears and the gear module are selected so as to minimize the deviation of output speeds from specified values and the overall center distance of the gearbox. In the strength design stage, the face widths of the various gear pairs are chosen so as to minimize the volume of the material of the gears and to maximize the power transmitted by the gearbox. A goal programming approach is suggested for the solution of the multiobjective nonlinear constrained optimization problem by treating the ideal feasible solutions as the goals for the corresponding objective functions. The utility of the resulting computer program is demonstrated through the design of six- and 18-speed gearboxes. The present methodology offers the feasibility of automating the design of gearboxes by incorporating all the (conflicting) design requirements and objectives.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1456
Author(s):  
Stefka Fidanova ◽  
Krassimir Todorov Atanassov

Some of industrial and real life problems are difficult to be solved by traditional methods, because they need exponential number of calculations. As an example, we can mention decision-making problems. They can be defined as optimization problems. Ant Colony Optimization (ACO) is between the best methods, that solves combinatorial optimization problems. The method mimics behavior of the ants in the nature, when they look for a food. One of the algorithm parameters is called pheromone, and it is updated every iteration according quality of the achieved solutions. The intuitionistic fuzzy (propositional) logic was introduced as an extension of Zadeh’s fuzzy logic. In it, each proposition is estimated by two values: degree of validity and degree of non-validity. In this paper, we propose two variants of intuitionistic fuzzy pheromone updating. We apply our ideas on Multiple-Constraint Knapsack Problem (MKP) and compare achieved results with traditional ACO.


2021 ◽  
Vol 54 (4) ◽  
pp. 1-27
Author(s):  
Bekir Afsar ◽  
Kaisa Miettinen ◽  
Francisco Ruiz

Interactive methods are useful decision-making tools for multiobjective optimization problems, because they allow a decision-maker to provide her/his preference information iteratively in a comfortable way at the same time as (s)he learns about all different aspects of the problem. A wide variety of interactive methods is nowadays available, and they differ from each other in both technical aspects and type of preference information employed. Therefore, assessing the performance of interactive methods can help users to choose the most appropriate one for a given problem. This is a challenging task, which has been tackled from different perspectives in the published literature. We present a bibliographic survey of papers where interactive multiobjective optimization methods have been assessed (either individually or compared to other methods). Besides other features, we collect information about the type of decision-maker involved (utility or value functions, artificial or human decision-maker), the type of preference information provided, and aspects of interactive methods that were somehow measured. Based on the survey and on our own experiences, we identify a series of desirable properties of interactive methods that we believe should be assessed.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Fouzia Amir ◽  
Ali Farajzadeh ◽  
Jehad Alzabut

Abstract Multiobjective optimization is the optimization with several conflicting objective functions. However, it is generally tough to find an optimal solution that satisfies all objectives from a mathematical frame of reference. The main objective of this article is to present an improved proximal method involving quasi-distance for constrained multiobjective optimization problems under the locally Lipschitz condition of the cost function. An instigation to study the proximal method with quasi distances is due to its widespread applications of the quasi distances in computer theory. To study the convergence result, Fritz John’s necessary optimality condition for weak Pareto solution is used. The suitable conditions to guarantee that the cluster points of the generated sequences are Pareto–Clarke critical points are provided.


Sign in / Sign up

Export Citation Format

Share Document