Influence of Systematic Hull Shape Variations on Ship Stability Performances in Waves

2020 ◽  
pp. 1-14
Author(s):  
Nicola Petacco ◽  
Giuliano Vernengo ◽  
Diego Villa ◽  
Antonio Coppedé ◽  
Paola Gualeni

The sensitivity of ship stability performance in waves to geometric variation has been investigated by means of a simulation-based design framework. The study was devoted to assess the influence of hull geometry variations on some stability failure modes, namely, parametric roll (PR) and pure loss of stability (PLS). The application has been developed by using a representative model of a postpanamax container vessel. PR and PLS phenomena have been investigated by the application of second-generation intact stability criteria (SGISc). The initial multidimensional design space has been filled by 500 design configurations identified by means of a design of experiments approach. A method developed in-house, combining the subdivision surface and free-form deformation approaches, has been used to create the whole set of design alternatives. The generated design configurations have been assessed analyzing the results derived from application of the first- and the second-level SGIS vulnerability criteria for both the selected stability failure modes. To strengthen the correlation behaviors, the design space has then been further explored by using 10k design configurations exploiting the capabilities of a surrogate model-based approximation, relying on a Gaussian process formulation. The study has been focused on the correlations among the variables and the response functions, i.e., the outcomes of the SGIS vulnerability criteria. The significance, in terms of effects, of each geometry shape variable has been investigated. Results have been discussed in the light of the SGISc structure, to provide further insight into this innovative safety framework for a modern approach to intact stability. 1. Introduction In the last 10 years, the development of the so-called second-generation intact stability criteria (SGISc) has been one of the most engaging topics addressed by the Sub-Committee on Safety Design and Construction (SDC) of the International Maritime Organization (IMO).

2014 ◽  
Author(s):  
M. Tompuri ◽  
P. Ruponen ◽  
M. Forss ◽  
D. Lindroth

The International Maritime Organization (IMO) is revising the Intact Stability Code. The so-called second generation intact stability criteria will provide additional safety measures against stability failures in waves. The draft regulations for three failure modes, parametric roll, pure loss of stability and surf-riding/broaching are reviewed and sample calculations for a fast RoPax ship are presented. The main emphasis is on the sensitivity of the results to the applied input data, which is not very accurate in the initial design phase. The implementation and effects of the new calculations to the ship design are discussed.


2019 ◽  
Vol 161 (A3) ◽  

The International Maritime Organization is currently establishing second generation intact stability criteria, the dead ship stability is considered one important criterion, so the development of its direct stability assessment regulation has become a topic undergoing close review. In this paper a peak-over-threshold (POT) method is proposed to evaluate the dead ship stability, which focuses on the statistical extrapolation that exceed the threshold, also the traditional Monte Carlo simulation is carried out to approve the method. On the basis of verification calculation of the sample ship CEHIPAR2792, the capsizing probability of a certain warship is also conducted. Moreover, the influence of initial stability height GM and effective wave slope coefficient on the capsizing probability is analysed. The results and the possible reason for the difference are examined. This study is expected to provide technical support for the second-generation stability criteria and establish the capsizing probability of damaged dead ship stability.


2019 ◽  
Vol 161 (A3) ◽  
Author(s):  
LF Hu ◽  
QZ Zhang ◽  
WY Zhang ◽  
HB Qi

The International Maritime Organization is currently establishing second generation intact stability criteria, the dead ship stability is considered one important criterion, so the development of its direct stability assessment regulation has become a topic undergoing close review. In this paper a peak-over-threshold (POT) method is proposed to evaluate the dead ship stability, which focuses on the statistical extrapolation that exceed the threshold, also the traditional Monte Carlo simulation is carried out to approve the method. On the basis of verification calculation of the sample ship CEHIPAR2792, the capsizing probability of a certain warship is also conducted. Moreover, the influence of initial stability height GM and effective wave slope coefficient on the capsizing probability is analysed. The results and the possible reason for the difference are examined. This study is expected to provide technical support for the second-generation stability criteria and establish the capsizing probability of damaged dead ship stability.


Author(s):  
L F Hu ◽  
Q Z Zhang ◽  
W Y Zhang ◽  
H B Qi

The International Maritime Organization is currently establishing second generation intact stability criteria, the dead ship stability is considered one important criterion, so the development of its direct stability assessment regulation has become a topic undergoing close review. In this paper a peak-over-threshold (POT) method is proposed to evaluate the dead ship stability, which focuses on the statistical extrapolation that exceed the threshold, also the traditional Monte Carlo simulation is carried out to approve the method. On the basis of verification calculation of the sample ship CEHIPAR2792, the capsizing probability of a certain warship is also conducted. Moreover, the influence of initial stability height GM and effective wave slope coefficient Y on the capsizing probability is analysed. The results and the possible reason for the difference are examined. This study is expected to provide technical support for the second-generation stability criteria and establish the capsizing probability of damaged dead ship stability.


Author(s):  
Gennaro Rosano ◽  
Ermina Begović ◽  
Guido Boccadamo ◽  
Barbara Rinauro

The International Maritime Organization (IMO) finalized the Second Generation Intact Stability Criteria (SGISC), in February 2020. They are intended to be included in Part A of the 2008 International Code on Intact Stability in the following years. The SGISC consider five modes of dynamic stability failure in waves: parametric roll, pure loss of stability, surf-riding/broaching to, dead ship condition and excessive acceleration. In this paper, two semi-displacement, round bilge and transom stern hull forms, the parent hull of the Systematic Series D and the ONR Tumblehome, i.e. typical naval hull forms, are examined. Although naval ships are not directly impacted by SGISC, they are sensitive to dynamic stability failure phenomena due to their geometry and range of service speeds. The procedures to assess the ship vulnerability to the dead ship condition and excessive acceleration criteria, referring to the latest drafts of the criteria (SDC 7/5, 2019), were implemented in Matlab®,. The limiting KG curves associated with this set of criteria were obtained for each vessel. The minimum allowable KG curve associated with the excessive acceleration criterion was compared with the maximum allowable KG curve associated with dead ship condition, to investigate the existence of a safe operational area.


Author(s):  
Manases Tello Ruiz ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
Evert Lataire ◽  
Marc Vantorre

Abstract The IMO Intact Stability Code considers the parametric rolling phenomenon as one of the stability failure modes because of the larger roll angles attained. This hazardous condition of roll resonance can lead to loss of cargo, passenger discomfort, and even (in the extreme cases) the ship’s capsize. Studies as such are mostly conducted considering wave characteristics corresponding to wave lengths around one ship length (λ ≈ LPP) and wave amplitudes varying from moderate to rough values. These wave characteristics, recognised as main contributors to parametric rolling, are frequently encountered in deep water. Waves with lengths of such magnitudes are also met by modern container ships in areas in close proximity to ports, but with less significant wave amplitudes. In such areas, due to the limited water depth and the relatively large draft of the ships, shallow water effects influence the overall ship behaviour as well. Studies dedicated to parametric rolling occurrence in shallow water are scarce in literature. In spite of no accidents being yet reported in such scenarios, its occurrence and methods for its prediction require further attention; this in order to prevent any hazardous conditions. The present work investigates the parametric roll phenomenon numerically and experimentally in shallow water. The study is carried out with the KRISO container ship (KCS) hull. The numerical investigation uses methods available in literature to study the susceptibility and severity of parametric rolling. Their applicability to investigate this phenomenon in shallow water is also discussed. The experimental analysis was carried out at the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University). Model tests comprised a variation of different forward speeds, wave amplitudes and wave lengths (around one LPP). The water depth was fixed to a condition equivalent to a gross under keel clearance (UKC) of 100% of the ship’s draft.


Teknik ◽  
2021 ◽  
Vol 42 (1) ◽  
pp. 52-62
Author(s):  
Alamsyah Alamsyah ◽  
Zen Zulkarnaen ◽  
Suardi Suardi

Ship stability that is not according to the IMO standard will make the ship capsize when operating. The purpose of this research is to determine the cause of the overturn in terms of the stability criteria of the ship. The method used is software  of simulation. Stability analysis is carried out with the load case that occurs in the field when an accident occurs and the ideal loadcase according to PM 104 2017 standards about’s the transportation of operation. The results showed is cargo of goods placed on the roof top (loadcase 1) based on the criteria of Intact Stability; area of the stability arm curve at heeling 0° ~ 30° = 0.9417 m.deg, area 0° ~ 40° = 1,0200 m.deg, 30° ~ 40° = 0.0783 m.deg, GZ value at heeling 30° = 0.029 m, angle of occurrence of maximum GZ = 21.8°, and the initial GMt value = 0.135 m, the results stated that all did not meet the Intact Stability code A.749 criteria, while in it was obtained cargo of goods placed in the hull (loadcase 2) based on Intact Stability; area of the stability arm curve at heeling 0° ~ 30° = 4.5338 m.deg, area 0° ~ 40° = 7.1643 m.deg, area 30° ~ 40° = 2.6305 m.deg, GZ value at heeling 30° = 0.265 m, angle of occurrence of maximum GZ = 34.5°, and the initial GMt value = 0.621 m, the results stated that all met the Intact Stability code A.749 criteria


Sign in / Sign up

Export Citation Format

Share Document